Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Planta ; 253(2): 29, 2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33423117

RESUMO

MAIN CONCLUSION: Silicon inhibits the growth of Alternaria alternata into sorghum root cells by maintaining their integrity through stimulating biochemical defense reactions rather than by silica-based physical barrier creation. Although the ameliorating effect of silicon (Si) on plant resistance against fungal pathogens has been proven, the mechanism of its action needs to be better understood on a cellular level. The present study explores the effect of Si application in sorghum roots infected with fungus Alternaria alternata under controlled in vitro conditions. Detailed anatomical and cytological observations by both fluorescent and electron microscopy revealed that Si supplementation results in the inhibition of fungal hyphae growth into the protoplast of root cells. An approach of environmental scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy enabling spatial detection of Si even at low concentrations showed that there is no continual solid layer of silica in the root cell walls of the rhizodermis, mesodermis and exodermis physically blocking the fungal growth into the protoplasts. Additionally, biochemical evidence suggests that Si speeds up the onset of activities of phenylpropanoid pathway enzymes phenylalanine ammonia lyase, peroxidases and polyphenol oxidases involved in phenolic compounds production and deposition to plant cell walls. In conclusion, Si alleviates the negative impact of A. alternata infection by limiting hyphae penetration through sorghum root cell walls into protoplasts, thus maintaining their structural and functional integrity. This might occur by triggering plant biochemical defense responses rather than by creating compact Si layer deposits.


Assuntos
Alternaria , Raízes de Plantas , Silício , Sorghum , Alternaria/efeitos dos fármacos , Fenilalanina Amônia-Liase , Doenças das Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/microbiologia , Silício/farmacologia , Sorghum/efeitos dos fármacos , Sorghum/enzimologia , Sorghum/microbiologia
2.
Sci Rep ; 9(1): 4466, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872791

RESUMO

Acanthamoebae success as human pathogens is largely due to the highly resistant cysts which represent a crucial problem in treatment of Acanthamoeba infections. Hence, the study of cyst wall composition and encystment play an important role in finding new therapeutic strategies. For the first time, we detected high activity of cytoskeletal elements - microtubular networks and filamentous actin, in late phases of encystment. Cellulose fibrils - the main components of endocyst were demonstrated in inter-cystic space, and finally in the ectocyst, hereby proving the presence of cellulose in both layers of the cyst wall. We detected clustering of intramembranous particles (IMPs) and their density alterations in cytoplasmic membrane during encystment. We propose a hypothesis that in the phase of endocyst formation, the IMP clusters represent cellulose microfibril terminal complexes involved in cellulose synthesis that after cyst wall completion are reduced. Cyst wall impermeability, due largely to a complex polysaccharide (glycans, mainly cellulose) has been shown to be responsible for Acanthamoeba biocide resistance and cellulose biosynthesis pathway is suggested to be a potential target in treatment of Acanthamoeba infections. Disruption of this pathway would affect the synthesis of cyst wall and reduce considerably the resistance to chemotherapeutic agents.


Assuntos
Acanthamoeba/ultraestrutura , Amebíase/parasitologia , Parede Celular/ultraestrutura , Celulose/metabolismo , Acanthamoeba/isolamento & purificação , Acanthamoeba/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Parede Celular/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Humanos , Microscopia Confocal , Microscopia Eletrônica , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura
3.
Ann Bot ; 122(5): 903-914, 2018 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29394308

RESUMO

Background and Aims: Root hairs increase the contact area of roots with soil and thereby enhance the capacity for solute uptake. The strict hair/non-hair pattern of Arabidopsis thaliana can change with nutrient deficiency or exposure to toxic elements, which modify root hair density. The effects of root hair density on cadmium (Cd) accumulation in shoots of arabidopsis genotypes with altered root hair development and patterning were studied. Methods: Arabidopsis mutants that are unable to develop root hairs (rhd6-1 and cpc/try) or produce hairy roots (wer/myb23) were compared with the ecotype Columbia (Col-0). Plants were cultivated on nutrient agar for 2 weeks with or without Cd. Cadmium was applied as Cd(NO3)2 at two concentrations, 10 and 100 µm. Shoot biomass, root characteristics (primary root length, lateral root number, lateral root length and root hair density) and Cd concentrations in shoots were assessed. Anatomical features (suberization of the endodermis and development of the xylem) that might influence Cd uptake and translocation were also examined. Key Results: Cadmium inhibited plant growth and reduced root length and the number of lateral roots and root hairs per plant. Suberin lamellae in the root endodermis and xylem differentiation developed closer to the root apex in plants exposed to 100 µm Cd. The latter effect was genotype dependent. Shoot Cd accumulation was correlated with root hair abundance when plants were grown in the presence of 10 µm Cd, but not when grown in the presence of 100 µm Cd, in which treatment the development of suberin lamellae closer to the root tip appeared to restrict Cd accumulation in shoots. Conclusions: Root hair density can have a large effect on Cd accumulation in shoots, suggesting that the symplasmic pathway might play a significant role in the uptake and accumulation of this toxic element.


Assuntos
Arabidopsis/fisiologia , Cádmio/metabolismo , Raízes de Plantas/fisiologia , Brotos de Planta/metabolismo , Poluentes do Solo/metabolismo , Arabidopsis/genética , Transporte Biológico , Raízes de Plantas/genética
4.
J Cutan Med Surg ; 20(6): 532-535, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26676952

RESUMO

BACKGROUND: The incidence of melanoma is increasing annually in Canada. OBJECTIVES: This retrospective study was designed to assess the ability of physicians of different specialties to accurately recognize melanoma. METHODS: Pathology reports of biopsies submitted to Vancouver Coastal Health with clinical diagnoses of melanoma were reviewed (January to July 2013). The clinical diagnoses made by dermatologists, general practitioners and family physicians, and all other specialists were correlated with the final histopathologic diagnoses. RESULTS: The dermatologists, general practitioners and family physicians, and all other specialists achieved diagnostic accuracies of 24.75%, 3.52%, and 12.75%, respectively. CONCLUSIONS: Although the diagnostic accuracy of dermatologists was significantly better than that the other practitioners, the majority of patients with suspicious skin lesions present to family physicians or general practitioners first. Thus, there is considerable value in providing more training and education to nondermatologists, because it can have a meaningful impact on patient care.


Assuntos
Competência Clínica , Dermatologia/estatística & dados numéricos , Erros de Diagnóstico , Medicina de Família e Comunidade/estatística & dados numéricos , Melanoma/diagnóstico , Neoplasias Cutâneas/diagnóstico , Dermatologia/normas , Medicina de Família e Comunidade/normas , Humanos , Estudos Retrospectivos
5.
Acta Biol Hung ; 66(2): 192-204, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26081275

RESUMO

Effects of CdCl2, NiCl2 or both on superoxide production, viability and membrane potential (EM) of root cells in meristematic (MZ) and differentiation (DZ) zones of two maize cultivars (cv. Premia and cv. Blitz) were studied. Plants were supplied with 10 and 100 µM concentrations of heavy metals (HM). The responses in the studied parameters to HM were concentration- and time-dependent, and were found only in the cells of MZ. The treatment of roots with Cd-stimulated massive superoxide production, although to different extent depending on the cultivar, root zone, and metal concentration. The stimulating effect of Ni on oxidative burst in Cd-treated maize roots was related to an increased Cd-induced superoxide production. The cell death appeared between 24 and 48 h and between 12 and 24 h of the 10 µM and 100 µM metal treatments, respectively. This was in accordance with Cd-induced ROS (superoxide) production and the EM decline in the corresponding time periods. Cell viability, EM changes and partially superoxide production indicate that the impact of the metals on the studied parameters declined in the order Cd+Ni > Cd > Ni and that cv. Blitz tends to respond more sensitively than cv. Premia.


Assuntos
Cádmio/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Meristema/metabolismo , Níquel/farmacologia , Zea mays/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Meristema/citologia , Superóxidos/metabolismo , Zea mays/citologia
6.
Ann Bot ; 115(7): 1149-54, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25939652

RESUMO

BACKGROUND AND AIMS: Contractile roots are known and studied mainly in connection with the process of shrinkage of their basal parts, which acts to pull the shoot of the plant deeper into the ground. Previous studies have shown that the specific structure of these roots results in more intensive water uptake at the base, which is in contrast to regular root types. The purpose of this study was to find out whether the basal parts of contractile roots are also more active in translocation of cadmium to the shoot. METHODS: Plants of the South African ornamental species Tritonia gladiolaris were cultivated in vitro for 2 months, at which point they possessed well-developed contractile roots. They were then transferred to Petri dishes with horizontally separated compartments of agar containing 50 µmol Cd(NO3)2 in the region of the root base or the root apex. Seedlings of 4-d-old maize (Zea mays) plants, which do not possess contractile roots, were also transferred to similar Petri dishes. The concentrations of Cd in the leaves of the plants were compared after 10 d of cultivation. Anatomical analyses of Tritonia roots were performed using appropriately stained freehand cross-sections. KEY RESULTS: The process of contraction required specific anatomical adaptation of the root base in Tritonia, with less lignified and less suberized tissues in comparison with the subapical part of the root. These unusual developmental characteristics were accompanied by more intensive translocation of Cd ions from the basal part of contractile roots to the leaves than from the apical-subapical root parts. The opposite effects were seen in the non-contractile roots of maize, with higher uptake and transport by the apical parts of the root and lower uptake and transport by the basal part. CONCLUSIONS: The specific characteristics of contractile roots may have a significant impact on the uptake of ions, including toxic metals from the soil surface layers. This may be important for plant nutrition, for example in the uptake of nutrients from upper soil layers, which are richer in humus in otherwise nutrient-poor soils, and also has implications for the uptake of surface-soil pollutants.


Assuntos
Cádmio/metabolismo , Iridaceae/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo , Zea mays/metabolismo , Iridaceae/anatomia & histologia , Folhas de Planta/química , Raízes de Plantas/anatomia & histologia , Zea mays/anatomia & histologia
7.
Planta ; 239(5): 1055-64, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24519545

RESUMO

Cadmium uptake, tissue localization and structural changes induced at cellular level are essential to understand Cd tolerance in plants. In this study we have exposed plants of Pteris vittata to different concentrations of CdCl2 (0, 30, 60, 100 µM) to evaluate the tolerance of the fern to cadmium. Cadmium content determination and its histochemical localization showed that P. vittata not only takes up, but also transports and accumulates cadmium in the aboveground tissues, delocalizing it mainly in the less bioactive tissues of the frond, the trichomes and the scales. Cadmium tolerance in P. vittata was strictly related to morphogenic response induced by the metal itself in the root system. Adaptive response regarded changes of the root apex size, the developmental pattern of root hairs, the differentiation of xylem elements and endodermal suberin lamellae. All the considered parameters suggest that, in our experimental conditions, 60 µM of Cd may represent the highest concentration that P. vittata can tolerate; indeed this Cd level even improves the absorbance features of the root and allows good transport and accumulation of the metal in the fronds. The results of this study can provide useful information for phytoremediation strategies of soils contaminated by Cd, exploiting the established ability of P. vittata to transport, delocalize in the aboveground biomass and accumulate polluting metals.


Assuntos
Cádmio/metabolismo , Cádmio/toxicidade , Morfogênese/efeitos dos fármacos , Pteris/crescimento & desenvolvimento , Pteris/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Ditizona/farmacologia , Meristema/anatomia & histologia , Meristema/efeitos dos fármacos , Meristema/crescimento & desenvolvimento , Meristema/ultraestrutura , Pteris/efeitos dos fármacos
9.
Pigment Cell Melanoma Res ; 25(2): 213-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22145991

RESUMO

The E3 ligase Rad18 is a key regulator for the lesion bypass pathway, which plays an important role in genomic stability. However, the status of Rad18 expression in melanoma is not known. Using melanoma tissue microarray (TMA), we showed that nuclear Rad18 expression was upregulated in primary and metastatic melanoma compared to dysplastic nevi. Rad18 expression was significantly reduced in sun-exposed sites compared to the sun-protected sites. Strong Rad18 expression correlated with worse 5-year patient survival and was an independent prognostic factor for melanoma found in the sun-protected sites. Furthermore, we showed that melanoma cell proliferation and the expression of pAkt and cyclin D1 were reduced upon Rad18 knockdown. We, for the first time, showed that Rad18 is significantly increased in melanoma and predicts the poor outcome for melanoma in the sun-protected sites. Rad18 is involved in the regulation of melanoma cell proliferation, which can be exploited in designing new strategy for melanoma treatment.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D1 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Modelos de Riscos Proporcionais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Análise de Sobrevida , Ubiquitina-Proteína Ligases
10.
J Exp Bot ; 62(1): 21-37, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20855455

RESUMO

This article reviews the responses of plant roots to elevated rhizosphere cadmium (Cd) concentrations. Cadmium enters plants from the soil solution. It traverses the root through symplasmic or apoplasmic pathways before entering the xylem and being translocated to the shoot. Leaf Cd concentrations in excess of 5-10 µg g(-1) dry matter are toxic to most plants, and plants have evolved mechanisms to limit Cd translocation to the shoot. Cadmium movement through the root symplasm is thought to be restricted by the production of phytochelatins and the sequestration of Cd-chelates in vacuoles. Apoplasmic movement of Cd to the xylem can be restricted by the development of the exodermis, endodermis, and other extracellular barriers. Increasing rhizosphere Cd concentrations increase Cd accumulation in the plant, especially in the root. The presence of Cd in the rhizosphere inhibits root elongation and influences root anatomy. Cadmium concentrations are greater in the root apoplasm than in the root symplasm, and tissue Cd concentrations decrease from peripheral to inner root tissues. This article reviews current knowledge of the proteins involved in the transport of Cd across root cell membranes and its detoxification through sequestration in root vacuoles. It describes the development of apoplastic barriers to Cd movement to the xylem and highlights recent experiments indicating that their maturation is accelerated by high Cd concentrations in their immediate locality. It concludes that accelerated maturation of the endodermis in response to local Cd availability is of functional significance in protecting the shoot from excessive Cd loads.


Assuntos
Cádmio/metabolismo , Raízes de Plantas/metabolismo , Rizosfera , Transporte Biológico , Desenvolvimento Vegetal , Raízes de Plantas/crescimento & desenvolvimento , Plantas/metabolismo
11.
Ann Bot ; 107(2): 285-92, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21118841

RESUMO

BACKGROUND AND AIMS: Merwilla plumbea is an important African medicinal plant. As the plants grow in soils contaminated with metals from mining activities, the danger of human intoxication exists. An experiment with plants exposed to cadmium (Cd) was performed to investigate the response of M. plumbea to this heavy metal, its uptake and translocation to plant organs and reaction of root tissues. METHODS: Plants grown from seeds were cultivated in controlled conditions. Hydroponic cultivation is not suitable for this species as roots do not tolerate aquatic conditions, and additional stress by Cd treatment results in total root growth inhibition and death. After cultivation in perlite the plants exposed to 1 and 5 mg Cd L(-1) in half-strength Hoagland's solution were compared with control plants. Growth parameters were evaluated, Cd content was determined by inductively coupled plasma mass spectroscopy (ICP-MS) and root structure was investigated using various staining procedures, including the fluorescent stain Fluorol yellow 088 to detect suberin deposition in cell walls. KEY RESULTS: The plants exposed to Cd were significantly reduced in growth. Most of the Cd taken up by plants after 4 weeks cultivation was retained in roots, and only a small amount was translocated to bulbs and leaves. In reaction to higher Cd concentrations, roots developed a hypodermal periderm close to the root tip. Cells produced by cork cambium impregnate their cell walls by suberin. CONCLUSIONS: It is suggested that the hypodermal periderm is developed in young root parts in reaction to Cd toxicity to protect the root from radial uptake of Cd ions. Secondary meristems are usually not present in monocotyledonous species. Another interpretation explaining formation of protective suberized layers as a result of periclinal divisions of the hypodermis is discussed. This process may represent an as yet unknown defence reaction of roots when exposed to elemental stress.


Assuntos
Cádmio/toxicidade , Liliaceae/anatomia & histologia , Liliaceae/crescimento & desenvolvimento , Raízes de Plantas/anatomia & histologia , Cádmio/análise , Liliaceae/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plantas Medicinais/anatomia & histologia , Plantas Medicinais/efeitos dos fármacos , Plantas Medicinais/crescimento & desenvolvimento , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA