Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 31(5): 1275-1292, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37025062

RESUMO

Machado-Joseph disease (MJD)/spinocerebellar ataxia type 3 (SCA3) is the most common autosomal dominantly inherited ataxia worldwide. It is caused by an over-repetition of the trinucleotide CAG within the ATXN3 gene, which confers toxic properties to ataxin-3 (ATXN3) species. RNA interference technology has shown promising therapeutic outcomes but still lacks a non-invasive delivery method to the brain. Extracellular vesicles (EVs) emerged as promising delivery vehicles due to their capacity to deliver small nucleic acids, such as microRNAs (miRNAs). miRNAs were found to be enriched into EVs due to specific signal motifs designated as ExoMotifs. In this study, we aimed at investigating whether ExoMotifs would promote the packaging of artificial miRNAs into EVs to be used as non-invasive therapeutic delivery vehicles to treat MJD/SCA3. We found that miRNA-based silencing sequences, associated with ExoMotif GGAG and ribonucleoprotein A2B1 (hnRNPA2B1), retained the capacity to silence mutant ATXN3 (mutATXN3) and were 3-fold enriched into EVs. Bioengineered EVs containing the neuronal targeting peptide RVG on the surface significantly decreased mutATXN3 mRNA in primary cerebellar neurons from MJD YAC 84.2 and in a novel dual-luciferase MJD mouse model upon daily intranasal administration. Altogether, these findings indicate that bioengineered EVs carrying miRNA-based silencing sequences are a promising delivery vehicle for brain therapy.


Assuntos
Doença de Machado-Joseph , MicroRNAs , Camundongos , Animais , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/terapia , MicroRNAs/genética , Ataxina-3/genética , Interferência de RNA , Peptídeos/genética
2.
Brain ; 143(2): 407-429, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31738395

RESUMO

Polyglutamine (polyQ) disorders are a group of nine neurodegenerative diseases that share a common genetic cause, which is an expansion of CAG repeats in the coding region of the causative genes that are otherwise unrelated. The trinucleotide expansion encodes for an expanded polyQ tract in the respective proteins, resulting in toxic gain-of-function and eventually in neurodegeneration. Currently, no disease-modifying therapies are available for this group of disorders. Nevertheless, given their monogenic nature, polyQ disorders are ideal candidates for therapies that target specifically the gene transcripts. Antisense oligonucleotides (ASOs) have been under intense investigation over recent years as gene silencing tools. ASOs are small synthetic single-stranded chains of nucleic acids that target specific RNA transcripts through several mechanisms. ASOs can reduce the levels of mutant proteins by breaking down the targeted transcript, inhibit mRNA translation or alter the maturation of the pre-mRNA via splicing correction. Over the years, chemical optimization of ASO molecules has allowed significant improvement of their pharmacological properties, which has in turn made this class of therapeutics a very promising strategy to treat a variety of neurodegenerative diseases. Indeed, preclinical and clinical strategies have been developed in recent years for some polyQ disorders using ASO therapeutics. The success of ASOs in several animal models, as well as encouraging results in the clinic for Huntington's disease, points towards a promising future regarding the application of ASO-based therapies for polyQ disorders in humans, offering new opportunities to address unmet medical needs for this class of disorders. This review aims to present a brief overview of key chemical modifications, mechanisms of action and routes of administration that have been described for ASO-based therapies. Moreover, it presents a review of the most recent and relevant preclinical and clinical trials that have tested ASO therapeutics in polyQ disorders.


Assuntos
Proteína Huntingtina/efeitos dos fármacos , Doença de Huntington/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Oligonucleotídeos Antissenso/farmacologia , Peptídeos/genética , Animais , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Doenças Neurodegenerativas/genética , Expansão das Repetições de Trinucleotídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA