Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 29: 101193, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35128079

RESUMO

Immobilization of lipase from Burkholderia gladioli BRM58833 on octyl sepharose (OCT) resulted in catalysts with higher activity and stability. Following, strategies were studied to further stabilize and secure the enzyme to the support using functionalized polymers, like polyethylenimine (PEI) and aldehyde-dextran (DEXa), to cover the catalyst with layers at different combinations. Alternatively, the construction of a bifunctional layer was studied using methoxypolyethylene glycol amine (NH 2 -PEG) and glycine. The catalyst OCT-PEI-DEXa was the most thermostable, with a 263.8-fold increase in stability when compared to the control condition. When evaluated under alkaline conditions, OCT-DEXa-PEG 10 /Gly was the most stable, reaching stability 70.1 times greater than the control condition. Proportionally, the stabilization obtained for B. gladioli BRM58833 lipase was superior to that obtained for the commercial B. cepacia lipase. Preliminary results in the hydrolysis of fish oil demonstrated the potential of the coating technique with bifunctional polymers, resulting in a stable catalyst with greater catalytic capacity for the production of omega-3 PUFAs. According to the results obtained, it is possible to modulate B. gladioli BRM58833 lipase properties like stability and catalytic activity for enrichment of omega-3 fatty acids.

2.
Fungal Genet Biol ; 60: 46-52, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23892064

RESUMO

Sugarcane bagasse was used as an inexpensive alternative carbon source for production of ß-xylanases from Aspergillus terreus. The induction profile showed that the xylanase activity was detected from the 6th day of cultivation period. Two low molecular weight enzymes, named Xyl T1 and Xyl T2 were purified to apparent homogeneity by ultrafiltration, gel filtration and ion exchange chromatographies and presented molecular masses of 24.3and 23.60 kDa, as determined by SDS-PAGE, respectively. Xyl T1 showed highest activity at 50 °C and pH 6.0, while Xyl T2 was most active at 45 °C and pH 5.0. Mass spectrometry analysis of trypsin digested Xyl T1 and Xyl T2 showed two different fingerprinting spectra, indicating that they are distinct enzymes. Both enzymes were specific for xylan as substrate. Xyl T1 was inhibited in greater or lesser degree by phenolic compounds, while Xyl T2 was very resistant to the inhibitory effect of all phenolic compounds tested. The apparent km values of Xyl T2, using birchwood xylan as substrate, decreased in the presence of six phenolic compounds. Both enzymes were inhibited by N-bromosuccinimide and Hg(2+) and activated by Mn(2+). Incubation of Xyl T1 and Xyl T2 with L-cysteine increased their half-lives up to 14 and 24 h at 50 °C, respectively. Atomic force microscopy showed a bimodal size distribution of globular particles for both enzymes, indicating that Xyl T1 is larger than Xyl T2.


Assuntos
Aspergillus/enzimologia , Endo-1,4-beta-Xilanases/metabolismo , Proteínas Fúngicas/metabolismo , Xilanos/metabolismo , Aspergillus/genética , Bromosuccinimida/química , Celulose/metabolismo , Cisteína/química , Endo-1,4-beta-Xilanases/antagonistas & inibidores , Endo-1,4-beta-Xilanases/química , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Manganês/química , Mercúrio/química , Microscopia de Força Atômica , Fenóis/química , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA