Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38792000

RESUMO

Magnetic resonance imaging (MRI) can facilitate accurate organ delineation and optimal dose distributions in high-dose-rate (HDR) MRI-Assisted Radiosurgery (MARS). Its use for this purpose has been limited by the lack of positive-contrast MRI markers that can clearly delineate the lumen of the HDR applicator and precisely show the path of the HDR source on T1- and T2-weighted MRI sequences. We investigated a novel MRI positive-contrast HDR brachytherapy or interventional radiotherapy line marker, C4:S, consisting of C4 (visible on T1-weighted images) complexed with saline. Longitudinal relaxation time (T1) and transverse relaxation time (T2) for C4:S were measured on a 1.5 T MRI scanner. High-density polyethylene (HDPE) tubing filled with C4:S as an HDR brachytherapy line marker was tested for visibility on T1- and T2-weighted MRI sequences in a tissue-equivalent female ultrasound training pelvis phantom. Relaxivity measurements indicated that C4:S solution had good T1-weighted contrast (relative to oil [fat] signal intensity) and good T2-weighted contrast (relative to water signal intensity) at both room temperature (relaxivity ratio > 1; r2/r1 = 1.43) and body temperature (relaxivity ratio > 1; r2/r1 = 1.38). These measurements were verified by the positive visualization of the C4:S (C4/saline 50:50) HDPE tube HDR brachytherapy line marker on both T1- and T2-weighted MRI sequences. Orientation did not affect the relaxivity of the C4:S contrast solution. C4:S encapsulated in HDPE tubing can be visualized as a positive line marker on both T1- and T2-weighted MRI sequences. MRI-guided HDR planning may be possible with these novel line markers for HDR MARS for several types of cancer.

2.
Biotechnol Bioeng ; 120(11): 3409-3422, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37605630

RESUMO

The survival of patients with glioblastoma multiforme (GBM), the most common and invasive form of malignant brain tumors, remains poor despite advances in current treatment methods including surgery, radiotherapy, and chemotherapy. Minocycline is a semi-synthetic tetracycline derivative that has been widely used as an antibiotic and more recently, it has been utilized as an antiangiogenic factor to inhibit tumorigenesis. The objective of this study was to investigate the utilization of electrospraying process to fabricate minocycline-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles with high drug loading and loading efficiency and to evaluate their ability to induce cell toxicity in human glioblastoma (i.e., U87-MG) cells. The results from this study demonstrated that solvent mixture of dicholoromethane (DCM) and methanol is the optimal solvent combination for minocycline and larger amount of methanol (i.e., 70:30) resulted in a higher drug loading. All three solvent ratios of DCM:methanol tested produced microparticles that were both spherical and smooth, all in the micron size range. The electrosprayed microparticles were able to elicit a cytotoxic response in U87-MG glioblastoma cells at a lower concentration of drug compared to the free drug. This work provides proof of concept to the hypothesis that electrosprayed minocycline-loaded PLGA microparticles can be a promising agent for the treatment of GBM and could have potential application for cancer therapies.

3.
ACS Appl Bio Mater ; 6(1): 104-116, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36511628

RESUMO

Magnetic calcium phosphate nanoparticles are biocompatible and have attracted much attention as biomaterials for bone tissue engineering and theranostic applications. In this study, we report the fabrication of a biocompatible magnetic nickel ferrite supported fluorapatite nanoparticle as a bone substitute material with hyperthermia potential using a facile wet precipitation approach. The composition and magnetic properties of the sample were analyzed using X-ray diffraction (XRD) and a vibrating sample magnetometer (VSM). The presence of both magnetic (NiFe2O4 and γ-Fe2O3) and fluorapatite phases was identified, and the sample exhibited ferromagnetic behavior with saturation magnetization and coercivity of 3.08 emu/g and 109 Oe, respectively. The fabricated sample achieved the hyperthermia temperature of ∼43 °C under tumor mimic conditions (neglecting Brownian relaxation) in 2.67 min, and the specific loss power (SLP) was estimated to be 898 W/g(Ni+Fe) which is sufficient to prompt irreversible cell apoptosis. Biocompatibility of the synthesized nanoparticle was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium (MTT) assay with fibroblast NIH 3T3 and L929 cells. An in vitro drug release experiment was conducted at pH 5 (tumor mimic) and 7.4 (physiological), which revealed a release of 49.8% in the former and 11.6% in the latter pH for 11 days. The prepared sample showed antibacterial activity against S. aureus.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Humanos , Preparações Farmacêuticas , Staphylococcus aureus , Apatitas , Fenômenos Magnéticos
4.
Future Med Chem ; 13(21): 1833-1843, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34545754

RESUMO

Background: The utilization of iron oxide nanoparticles (Fe3O4 NPs) to control minocycline release rates from poly(lactic-co-glycolic acid) scaffolds fabricated from an easy/economical technique is presented. Results & methodology: A larger change in temperature and amount of minocycline released was observed for scaffolds with higher amounts of Fe3O4 NPs, demonstrating that nanoparticle concentration can control heat generation and minocycline release. Temperatures near a polymer's glass transition temperature can result in the polymer's chain becoming more mobile and thus increasing drug diffusion out of the scaffold. Elevated temperature and minocycline released from the scaffold can work synergistically to enhance glioblastoma cell death. Conclusion: This study suggests that Fe3O4 NPs are promising materials for controlling minocycline release from polymeric scaffolds by magnetic hyperthermia for the treatment of glioblastoma.


Assuntos
Antineoplásicos/farmacologia , Glioblastoma/tratamento farmacológico , Nanopartículas Magnéticas de Óxido de Ferro/química , Minociclina/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/patologia , Humanos , Minociclina/química
5.
Mikrochim Acta ; 187(6): 317, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385722

RESUMO

The effect of novel silver nanowire encapsulated NaGdF4:Yb,Er hybrid nanocomposite on the upconversion emission and bioimaging properties has been investigated. The upconvension nanomaterials were synthesised by polyol method in the presence of ethylene glycol, PVP and ethylenediamine. The NaGdF4:Yb,Er-Ag hybrid was formed with upconverting NaGdF4:Yb,Er nanoparticles of size ~ 80 nm and silver nanowires of thickness ~ 30 nm. The surface plasmon induced by the silver ion in the NaGdF4:Yb,Er-Ag nanocomposite resulted an intense upconversion green emission at 520 nm and red emission at 660 nm by NIR diode laser excitation at 980 nm wavelength. The UV-Vis-NIR spectral absorption at 440 nm and 980 nm, the intense Raman vibrational modes and the strong upconversion emission results altogether confirm the localised surface plasmon resonance effect of silver ion in the hybrid nanocomposite. MRI study of both NaGdF4:Yb,Er nanoparticle and NaGdF4:Yb,Er-Ag nanocomposite revealed the T1 relaxivities of 22.13 and 10.39 mM-1 s-1, which are larger than the commercial Gd-DOTA contrast agent of 3.08 mM-1 s-1. CT imaging NaGdF4:Yb,Er-Ag and NaGdF4:Yb,Er respectively showed the values of 53.29 HU L/g and 39.51 HU L/g, which are higher than 25.78 HU L/g of the CT contrast agent Iobitridol. The NaGdF4:Yb,Er and NaGdF4:Yb,Er-Ag respectively demonstrated a negative zeta potential of 54 mV and 55 mV, that could be useful for biological application. The in vitro cytotoxicity of the NaGdF4:Yb,Er tested in HeLa and MCF-7 cancer cell line by MTT assay demonstrated a cell viability of 90 and 80 %, respectively. But, the cell viability of NaGdF4:Yb,Er-Ag slightly decreased to 80 and 78%. The confocal microscopy imaging showed that the UCNPs are effectively up-taken inside the nucleolus of the cancer cells, and it might be useful for NIR laser-assisted phototherapy for cancer treatment. Graphical abstract.


Assuntos
Meios de Contraste/química , Corantes Fluorescentes/química , Fluoretos/química , Gadolínio/química , Nanocompostos/química , Nanofios/química , Linhagem Celular Tumoral , Meios de Contraste/efeitos da radiação , Érbio/química , Érbio/efeitos da radiação , Corantes Fluorescentes/efeitos da radiação , Fluoretos/efeitos da radiação , Gadolínio/efeitos da radiação , Humanos , Imageamento por Ressonância Magnética , Nanopartículas Metálicas/química , Nanopartículas Metálicas/efeitos da radiação , Microscopia Confocal , Microscopia de Fluorescência , Nanocompostos/efeitos da radiação , Nanofios/efeitos da radiação , Prata/química , Prata/efeitos da radiação , Tomografia Computadorizada por Raios X , Itérbio/química , Itérbio/efeitos da radiação
6.
J Biomed Mater Res B Appl Biomater ; 107(7): 2317-2324, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30767394

RESUMO

Glioblastoma multiforme (GBM) is the most common and invasive form of malignant brain tumors and despite advances in surgery, radiotherapy, and chemotherapy, the survival of patients with GBM still remains poor. Temozolomide (TMZ) is the chemotherapy drug that is most commonly given orally after surgical resection of these tumors. In this study, the effects of solvents (i.e., dichloromethane and acetonitrile) used for the fabrication of electrosprayed TMZ-loaded poly(lactic-co-glycolic acid) (PLGA) on drug loading, loading efficiency, drug release kinetics, surface morphology, and particle size were investigated. The results from this study demonstrated that by using a larger volume of a solvent with higher polarity (i.e., acetonitrile) which allows for a higher amount of hydrophilic TMZ to dissolve into the polymer solution, higher drug loading could be achieved. However, the particles fabricated with high amount of acetonitrile, which has a lower vapor pressure, had large pores and a smaller diameter which led to an initial burst release and high cumulative release at the end of the study. An optimal combination of the two solvents is needed to result in particles with a good amount of loading and minimal initial burst release. The electrosprayed microparticles were able to illicit a cytotoxic response in U-87 MG glioblastoma cells at a lower concentration of drug compared to the free drug. This work indicated that electrospraying is a promising method for the fabrication of TMZ-loaded PLGA microparticles for the treatment of GBM and solvent composition can be altered to control drug loading and release kinetics. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2317-2324, 2019.


Assuntos
Glioblastoma/tratamento farmacológico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Temozolomida , Linhagem Celular Tumoral , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Temozolomida/química , Temozolomida/farmacocinética , Temozolomida/farmacologia
7.
J Toxicol ; 2018: 6362426, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29785182

RESUMO

The novel positive-contrast magnetic resonance imaging (MRI) marker C4 consists of an aqueous solution of cobalt chloride (CoCl2) complexed with the chelator N-acetylcysteine (NAC). We evaluated whether the presence of C4 or its components would produce reactive oxygen species (ROS, including hydroxyl, peroxyl, or other reactive oxygen species) in cultured cells. Human cancer or normal cells were incubated with 1% (w/v) CoCl2·6H2O or 2% NAC or a combination of both (1% CoCl2·6H2O : 2% NAC in an aqueous solution, abbreviated as Co : NAC) in the presence or absence of H2O2. Intracellular ROS levels were measured and quantified by change in relative fluorescence units. Student's t-tests were used. In all cell lines exposed to 1000 µM H2O2, the Co : NAC led to ≥94.7% suppression of ROS at 5 minutes and completely suppressed ROS at 60 and 90 minutes; NAC suppressed ROS by ≥76.6% at 5 minutes and by ≥94.5% at 90 minutes; and CoCl2·6H2O suppressed ROS by ≥37.2% at 30 minutes and by ≥48.6% at 90 minutes. These results demonstrate that neither Co : NAC nor its components generated ROS; rather, they suppressed ROS production in cultured cells, suggesting that C4 would not enhance ROS production in clinical use.

8.
J Toxicol ; 2018: 9173452, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30631353

RESUMO

C4 (cobalt dichloride-N-acetylcysteine [1% CoCl2:2% NAC]) is a novel magnetic resonance imaging contrast marker that facilitates visualization of implanted radioactive seeds in cancer brachytherapy. We evaluated the toxicity of C4. Rats were assigned to control (0% CoCl2:NAC), low-dose (0.1% CoCl2:2% NAC), reference-dose (C4), and high-dose (10% CoCl2:2% NAC) groups. Agent was injected into the left quadriceps femoris muscle of the rats. Endpoints were organ and body weights, hematology, and serum chemistry and histopathologic changes of tissues at 48 hours and 28 and 63 days after dosing. Student's t tests were used. No abnormalities in clinical signs, terminal body and organ weights, or hematologic and serum chemistry were noted, and no gross or histopathologic lesions of systemic tissue toxicity were found in any treatment group at any time point studied. At the site of injection, concentration-dependent acute responses were observed in all treatment groups at 48 hours after dosing and were recovered by 28 days. No myofiber degeneration or necrosis was observed at 28 or 63 days in any group. In conclusion, a single intramuscular dose of C4 produced no acute or chronic systemic toxicity or inflammation in rats, suggesting that C4 may be toxicologically safe for clinical use in cancer brachytherapy.

9.
Phys Med Biol ; 59(10): 2505-16, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24778352

RESUMO

Brachytherapy, a radiotherapy technique for treating prostate cancer, involves the implantation of numerous radioactive seeds into the prostate. While the implanted seeds can be easily identified on a computed tomography image, distinguishing the prostate and surrounding soft tissues is not as straightforward. Magnetic resonance imaging (MRI) offers superior anatomical delineation, but the seeds appear as dark voids and are difficult to identify, thus creating a conundrum. Cobalt dichloride-N-acetyl-cysteine (C4) has previously been shown to be promising as an encapsulated contrast agent marker. We performed spin-lattice relaxation time (T1) and spin-spin relaxation time (T2) measurements of C4 solutions with varying cobalt dichloride concentrations to determine the corresponding relaxivities, r1 and r2. These relaxation parameters were investigated at different field strengths, temperatures and orientations. T1 measurements obtained at 1.5 and 3.0 T, as well as at room and body temperature, showed that r1 is field-independent and temperature-independent. Conversely, the T2 values at 3.0 T were shorter than at 1.5 T, while the T2 values at body temperature were slightly higher than at room temperature. By examining the relaxivities with the C4 vials aligned in three different planes, we found no orientation-dependence. With these relaxation characteristics, we aim to develop pulse sequences that will enhance the C4 signal against prostatic stroma. Ultimately, the use of C4 as a positive contrast agent marker will encourage the use of MRI to obtain an accurate representation of the radiation dose delivered to the prostate and surrounding normal anatomical structures.


Assuntos
Acetilcisteína , Braquiterapia/normas , Meios de Contraste , Marcadores Fiduciais , Imageamento por Ressonância Magnética , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/radioterapia , Humanos , Masculino , Temperatura , Fatores de Tempo
10.
Int J Biol Sci ; 9(1): 45-54, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23289016

RESUMO

STAT5B, a specific member of the STAT family, is intimately associated with prostate tumor progression. While the full form of STAT5B is thought to promote tumor progression, a naturally occurring truncated isoform acts as a tumor suppressor. We previously demonstrated that truncated STAT5 is generated by insertion of an alternatively spliced exon and results in the introduction of an early termination codon. Present approaches targeting STAT proteins based on inhibition of functional domains of STAT's, such as DNA-binding, cooperative binding (protein-protein interaction), dimerization and phosphorylation will halt the action of the entire gene, both the proto-oncogenic and tumor suppressor functions of Stat5B. In this report we develop a new approach aimed at inhibiting the expression of full-length STAT5B (a proto-oncogene) while simultaneously enhancing the expression of STAT5∆B (a tumor suppressor). We have demonstrated the feasibility of using steric-blocking splice-switching oligonucleotides (SSOs) with a complimentary sequence to the targeted exon-intron boundary to enhance alternative intron/exon retention (up to 10%). The functional effect of the intron/exon proportional tuning was validated by cell proliferation and clonogenic assays. The new scheme applies specific steric-blocking splice-switching oligonucleotides and opens an opportunity for anti-tumor treatment as well as for the alteration of functional abilities of other STAT proteins.


Assuntos
Processamento Alternativo/genética , Proto-Oncogenes/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Genes Supressores de Tumor , Humanos , Masculino , Oligonucleotídeos/genética , Proto-Oncogene Mas , Splicing de RNA/genética , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo
11.
Int J Radiat Oncol Biol Phys ; 85(4): 1024-30, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23092727

RESUMO

PURPOSE: C4, a cobalt dichloride-N-acetyl cysteine complex, is being developed as a positive-signal magnetic resonance imaging (MRI) marker to localize implanted radioactive seeds in prostate brachytherapy. We evaluated the toxicity and biodistribution of C4 in rats with the goal of simulating the systemic effects of potential leakage from C4 MRI markers within the prostate. METHODS AND MATERIALS: 9-µL doses (equivalent to leakage from 120 markers in a human) of control solution (0.9% sodium chloride), 1% (proposed for clinical use), and 10% C4 solution were injected into the prostates of male Sprague-Dawley rats via laparotomy. Organ toxicity and cobalt disposition in plasma, tissues, feces, and urine were evaluated. RESULTS: No C4-related morbidity or mortality was observed in the biodistribution arm (60 rats). Biodistribution was measurable after 10% C4 injection: cobalt was cleared rapidly from periprostatic tissue; mean concentrations in prostate were 163 µg/g and 268 µg/g at 5 and 30 minutes but were undetectable by 60 minutes. Expected dual renal-hepatic elimination was observed, with percentages of injected dose recovered in tissues of 39.0 ± 5.6% (liver), >11.8 ± 6.5% (prostate), and >5.3 ± 0.9% (kidney), with low plasma concentrations detected up to 1 hour (1.40 µg/mL at 5-60 minutes). Excretion in urine was 13.1 ± 4.6%, with 3.1 ± 0.54% recovered in feces by 24 hours. In the toxicity arm, 3 animals died in the control group and 1 each in the 1% and 10% groups from surgical or anesthesia-related complications; all others survived to scheduled termination at 14 days. No C4-related adverse clinical signs or organ toxicity were observed. CONCLUSION: C4-related toxicity was not observed at exposures at least 10-fold the exposure proposed for use in humans. These data demonstrating lack of systemic toxicity with dual routes of elimination in the event of in situ rupture suggest that C4 warrants further investigation as an MRI marker for prostate brachytherapy.


Assuntos
Acetilcisteína/análogos & derivados , Acetilcisteína/farmacocinética , Imageamento por Ressonância Magnética/métodos , Próstata/metabolismo , Acetilcisteína/toxicidade , Animais , Braquiterapia/métodos , Humanos , Rim/metabolismo , Fígado/metabolismo , Masculino , Neoplasias da Próstata/radioterapia , Ratos , Distribuição Tecidual
12.
Med Dosim ; 36(2): 200-5, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20537886

RESUMO

We have developed a novel MRI marker for prostate brachytherapy. The purpose of this study was to evaluate the changes in anisotropy when cobalt chloride complex contrast agent encapsulated contrast agent markers (C4-ECAM) were placed adjacent to an iodine-125 (I-125) titanium seed, and to verify that the C4-ECAMs were visible on magnetic resonance imaging (MRI) after radiation exposure. Two C4-ECAMs were verified to be MRI visible in a phantom before radiation exposure. The C4-ECAMs were then attached to each end of a 12.7-U (10-mCi) I-125 titanium seed in a polymer tube. Anisotropy was measured and analyzed with the seed alone and with attached C4-ECAMs by suspending thermoluminescent dosimeters in a water phantom in 2 circles surrounding the radioactive source with radius of 1 or 2 cm. A T1-weighted MRI evaluation of C4-ECAMs was then performed after exposure to the amount of radiation typically delivered during 1 month of prostate brachytherapy. Measured values of the anisotropy function F(r, θ) for the I-125 seed with and without the C4-ECAMs were mutually statistically indistinguishable (standard error of the mean <4.2%) and agreed well with published TG-43 values for the bare seed. As expected, the anisotropy function ϕ(an)(r) for the 2 datasets (with and without C4-ECAMs) derived from the measured F(r, θ) did not exhibit statistically measurable difference. Both datasets showed agreement with the published TG-43 ϕ(an)(r) for the bare seed. The C4-ECAMs were well visualized by MRI after 1 month of radiation exposure. There were no changes in anisotropy when the C4-ECAMs were placed next to an I-125 radioactive seed, and the C4-ECAMs were visualized after radiation exposure.


Assuntos
Braquiterapia/métodos , Cobalto , Radioisótopos do Iodo/uso terapêutico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/radioterapia , Anisotropia , Meios de Contraste , Humanos , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Masculino , Imagens de Fantasmas , Compostos Radiofarmacêuticos
13.
Int J Radiat Oncol Biol Phys ; 71(1): 5-8, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18406882

RESUMO

PURPOSE: Magnetic resonance imaging (MRI) is the optimal imaging modality for the prostate and surrounding critical organ structures. However, on MRI, the titanium radioactive seeds used for brachytherapy appear as black holes (negative contrast) and cannot be accurately localized. We sought to develop an encapsulated contrast agent marker (ECAM) with high-signal intensity on MRI to permit accurate localization of radioactive seeds with MRI during and after prostate brachytherapy. METHODS AND MATERIALS: We investigated several agents with paramagnetic and superparamagnetic properties. The agents were injected into titanium, acrylic, and glass seeds, which were linked together in various combinations and imaged with MRI. The agent with the greatest T1-weighted signal was tested further in a canine prostate and agarose phantom. Studies were performed on a 1.5-T clinical MRI scanner. RESULTS: The cobalt-chloride complex contrast (C4) agent with stoichiometry (CoCl(2))(0.8)(C(2)H(5)NO(2))(0.2) had the greatest T1-weighted signal (positive contrast) with a relaxivity ratio >1 (r(2)/r(1) = 1.21 +/- 0.29). Acrylic-titanium and glass-titanium seed strands were clearly visualized with the encapsulated contrast agent marker. CONCLUSION: We have developed a novel ECAM that permits positive identification of the radioactive seeds used for prostate brachytherapy on MRI. Preclinical in vitro phantom studies and in vivo canine studies are needed to further optimize MRI sequencing techniques to facilitate MRI-based dosimetry.


Assuntos
Braquiterapia/instrumentação , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/radioterapia , Acrilatos/química , Animais , Cobalto/química , Cães , Vidro/química , Magnetismo , Masculino , Nitratos/química , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA