Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 129(3): 259-270, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-34718377

RESUMO

BACKGROUND: As in most land plants, the roots of orchids (Orchidaceae) associate with soil fungi. Recent studies have highlighted the diversity of the fungal partners involved, mostly within Basidiomycotas. The association with a polyphyletic group of fungi collectively called rhizoctonias (Ceratobasidiaceae, Tulasnellaceae and Serendipitaceae) is the most frequent. Yet, several orchid species target other fungal taxa that differ from rhizoctonias by their phylogenetic position and/or ecological traits related to their nutrition out of the orchid roots (e.g. soil saprobic or ectomycorrhizal fungi). We offer an evolutionary framework for these symbiotic associations. SCOPE: Our view is based on the 'Waiting Room Hypothesis', an evolutionary scenario stating that mycorrhizal fungi of land flora were recruited from ancestors that initially colonized roots as endophytes. Endophytes biotrophically colonize tissues in a diffuse way, contrasting with mycorrhizae by the absence of morphological differentiation and of contribution to the plant's nutrition. The association with rhizoctonias is probably the ancestral symbiosis that persists in most extant orchids, while during orchid evolution numerous secondary transitions occurred to other fungal taxa. We suggest that both the rhizoctonia partners and the secondarily acquired ones are from fungal taxa that have broad endophytic ability, as exemplified in non-orchid roots. We review evidence that endophytism in non-orchid plants is the current ecology of many rhizoctonias, which suggests that their ancestors may have been endophytic in orchid ancestors. This also applies to the non-rhizoctonia fungi that were secondarily recruited by several orchid lineages as mycorrhizal partners. Indeed, from our review of the published literature, they are often detected, probably as endophytes, in extant rhizoctonia-associated orchids. CONCLUSION: The orchid family offers one of the best documented examples of the 'Waiting Room Hypothesis': their mycorrhizal symbioses support the idea that extant mycorrhizal fungi have been recruited among endophytic fungi that colonized orchid ancestors.


Assuntos
Micorrizas , Orchidaceae , Endófitos , Orchidaceae/microbiologia , Filogenia , Simbiose , Salas de Espera
2.
Mol Phylogenet Evol ; 159: 107105, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33601026

RESUMO

Angraecoid orchids present a remarkable diversity of chromosome numbers, which makes them a highly suitable system for exploring the impact of karyotypic changes on cladogenesis, diversification and morphological differentiation. We compiled an annotated cytotaxonomic checklist for 126 species of Angraecinae, which was utilised to reconstruct chromosomal evolution using a newly-produced, near-comprehensive phylogenetic tree that includes 245 angraecoid taxa. In tandem with this improved phylogenetic framework, using combined Bayesian, maximum likelihood and parsimony approaches on ITS-1 and five plastid markers, we propose a new cladistic nomenclature for the angraecoids, and we estimate a new timeframe for angraecoid radiation based on a secondary calibration, and calculate diversification rates using a Bayesian approach. Coincident divergence dates between clades with identical geographical distributions in the angraecoids and the pantropical orchid genus Bulbophyllum suggest that the same events may have intervened in the dispersal of these two epiphytic groups between Asia, continental Africa, Madagascar and the Neotropics. The major angraecoid lineages probably began to differentiate in the Middle Miocene, and most genera and species emerged respectively around the Late Miocene-Pliocene boundary and the Pleistocene. Ancestral state reconstruction using maximum likelihood estimation revealed an eventful karyotypic history dominated by descending dysploidy. Karyotypic shifts seem to have paralleled cladogenesis in continental tropical Africa, where approximately 90% of the species have descended from at least one inferred transition from n = 17-18 to n = 25 during the Middle Miocene Climatic Transition, followed by some clade-specific descending and ascending dysploidy from the Late Miocene to the Pleistocene. Conversely, detected polyploidy is restricted to a few species lineages mostly originating during the Pleistocene. No increases in net diversification could be related to chromosome number changes, and the apparent net diversification was found to be highest in Madagascar, where karyotypic stasis predominates. Finally, shifts in chromosome number appear to have paralleled the evolution of rostellum structure, leaflessness, and conspicuous changes in floral colour.


Assuntos
Evolução Biológica , Especiação Genética , Cariótipo , Orchidaceae/classificação , Filogenia , África , Ásia , Teorema de Bayes , Funções Verossimilhança , Madagáscar , Orchidaceae/genética , Filogeografia , Plastídeos/genética
3.
Mol Phylogenet Evol ; 153: 106946, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32860974

RESUMO

Phylogenetic relationships within the Orchideae sensu Pridgeon et al, remain one of the biggest unresolved issues in our understanding of the taxonomy of the orchids. Members of the Orchideae are numerous and widespread in Africa but remain poorly represented in phylogenetic research. In this study we included a broad sampling of African taxa for which we sequenced three plastid (rbcl, matK and trnL + trnL-F) and two nuclear regions (ITS and 18S). We used 368 sequences representing 278 species and 49 genera to infer relationships using the Bayesian Inference and Maximum Likelihood method. Our results show strong support for three clades, two of which almost entirely match the historical circumscription of Orchidinae and Habenariinae, and the third, Bartholininae, sister to the former two, includes the genera Holothrix and Bartholina. Stenoglottis should be assigned to Orchidinae and not to Habenariinae. Several genera such as Habenaria, Cynorkis and Benthamia are shown to be para- or polyphyletic: Bonatea, Centrostigma, Platycoryne and Roeperocharis are all embedded in Habenaria; Physoceras, Arnottia and part of Benthamia are embedded in Cynorkis. We propose a subdivision of Orchideae sensu lato into nine subtribes, but refrain from making generic re-arrangements until more extensive or more in-depth studies have been done.


Assuntos
Orchidaceae/classificação , Filogenia , África , Teorema de Bayes , DNA de Plantas/genética , Orchidaceae/genética , Plastídeos/genética
4.
Mol Phylogenet Evol ; 126: 241-249, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29673694

RESUMO

Despite significant progress made in recent years toward developing an infrafamilial classification of Orchidaceae, our understanding of relationships among and within tribal and subtribal groups of epidendroid orchids remains incomplete. To reassess generic delimitation among one group of these epidendroids, the African angraecoids, phylogenetic relationships were inferred from DNA sequence data from three regions, ITS, matK, and the trnL-trnF intergenic spacer, obtained from a broadly representative sample of taxa. Parsimony and Bayesian analyses yielded highly resolved trees that are in clear agreement and show significant support for many key clades within subtribe Angraecinae s.l. Angraecoid orchids comprise two well-supported clades: an African/American group and an Indian Ocean group. Molecular results also support many previously proposed relationships among genera, but also reveal some unexpected relationships. The genera Aerangis, Ancistrorhynchus, Bolusiella, Campylocentrum, Cyrtorchis, Dendrophylax, Eurychone, Microcoelia, Nephrangis, Podangis and Solenangis are all shown to be monophyletic, but Angraecopsis, Diaphananthe and Margelliantha are polyphyletic. Diaphananthe forms three well-supported clades, one of which might represent a new genus, and Rhipidoglossum is paraphyletic with respect to Cribbia and Rhaesteria, and also includes taxa currently assigned to Margelliantha. Tridactyle too is paraphyletic as Eggelingia is embedded within it. The large genus Angraecum is confirmed to be polyphyletic and several groups will have to be recognized as separate genera, including sections Dolabrifolia and Hadrangis. The recently segregated genus Pectinariella (previously recognized as A. sect. Pectinaria) is polyphyletic and its Continental African species will have to be removed. Similarly, some of the species recently transferred to Angraecoides that were previously placed in Angraecum sects. Afrangraecum and Conchoglossum will have to be moved and described as a new genus.


Assuntos
Orchidaceae/classificação , Filogenia , Teorema de Bayes , DNA de Plantas/genética , Oceano Índico , Orchidaceae/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA