Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 4(3): 102500, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37616165

RESUMO

Here, we present an in vitro test battery to analyze chemicals for their potential to induce liver triglyceride accumulation, a hallmark of liver steatosis. We describe steps for using HepG2 and HepaRG human hepatoma cells in conjunction with a combination of several in vitro assays covering the different molecular initiating events and key events of the respective adverse outcome pathway. This protocol is suitable for assessing single substance effects as well as mixtures allowing their classification as steatotic or non-steatotic. For complete details on the use and execution of this protocol, please refer to Luckert et al. (2018),1 Lichtenstein et al. (2020),2 and Knebel et al. (2019).3.


Assuntos
Rotas de Resultados Adversos , Carcinoma Hepatocelular , Fígado Gorduroso , Humanos , Fígado Gorduroso/metabolismo , Linhagem Celular
2.
Front Toxicol ; 5: 1216369, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538785

RESUMO

New approach methodologies (NAMs) have the potential to become a major component of regulatory risk assessment, however, their actual implementation is challenging. The European Partnership for the Assessment of Risks from Chemicals (PARC) was designed to address many of the challenges that exist for the development and implementation of NAMs in modern chemical risk assessment. PARC's proximity to national and European regulatory agencies is envisioned to ensure that all the research and innovation projects that are initiated within PARC agree with actual regulatory needs. One of the main aims of PARC is to develop innovative methodologies that will directly aid chemical hazard identification, risk assessment, and regulation/policy. This will facilitate the development of NAMs for use in risk assessment, as well as the transition from an endpoint-based animal testing strategy to a more mechanistic-based NAMs testing strategy, as foreseen by the Tox21 and the EU Chemical's Strategy for Sustainability. This work falls under work package 5 (WP5) of the PARC initiative. There are three different tasks within WP5, and this paper is a general overview of the five main projects in the Task 5.2 'Innovative Tools and methods for Toxicity Testing,' with a focus on Human Health. This task will bridge essential regulatory data gaps pertaining to the assessment of toxicological prioritized endpoints such as non-genotoxic carcinogenicity, immunotoxicity, endocrine disruption (mainly thyroid), metabolic disruption, and (developmental and adult) neurotoxicity, thereby leveraging OECD's and PARC's AOP frameworks. This is intended to provide regulatory risk assessors and industry stakeholders with relevant, affordable and reliable assessment tools that will ultimately contribute to the application of next-generation risk assessment (NGRA) in Europe and worldwide.

3.
EXCLI J ; 22: 221-236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998705

RESUMO

Plant protection products (PPPs) consist of one or more active substances and several co-formulants. Active substances provide the functionality of the PPP and are consequently evaluated according to standard test methods set by legal data requirements before approval, whereas co-formulants' toxicity is not as comprehensively assessed. However, in some cases mixture effects of active substances and co-formulants might result in increased or different forms of toxicity. In a proof-of-concept study we hence built on previously published results of Zahn et al. (2018[38]) on the mixture toxicity of Priori Xtra® and Adexar® to specifically investigate the influence of co-formulants on the toxicity of these commonly used fungicides. Products, their respective active substances in combination as well as some co-formulants were applied to human hepatoma cell line (HepaRG) in several dilutions. Cell viability analysis, mRNA expression, abundance of xenobiotic metabolizing enzymes and intracellular concentrations of active substances determined by LC-MS/MS analyses demonstrated that the toxicity of the PPPs is influenced by the presence of co-formulants in vitro. PPPs were more cytotoxic than the mix of their active substances. Gene expression profiles of cells treated with the PPPs were similar to those treated with their respective mixture combinations with marked differences. Co-formulants can cause gene expression changes on their own. LC-MS/MS analyses revealed higher intracellular concentrations of active substances in cells treated with PPPs compared to those treated with the respective active substances' mix. Proteomic data showed co-formulants can induce ABC transporters and CYP enzymes. Co-formulants can contribute to the observed increased toxicity of PPPs compared to their active substances in combination due to kinetic interactions, necessitating a more comprehensive evaluation approach.

4.
Food Chem Toxicol ; 166: 113212, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35690182

RESUMO

Toxicological risk assessment is essential in the evaluation and authorization of different classes of chemical substances. Genotoxicity and mutagenicity testing are of highest priority and rely on established in vitro systems with bacterial and mammalian cells, sometimes followed by in vivo testing using rodent animal models. Transcriptomic approaches have recently also shown their value to determine transcript signatures specific for genotoxicity. Here, we studied how transcriptomic data, in combination with in vitro tests with human cells, can be used for the identification of genotoxic properties of test compounds. To this end, we used liver samples from a 28-day oral toxicity study in rats with the pesticidal active substances imazalil, thiacloprid, and clothianidin, a neonicotinoid-type insecticide with, amongst others, known hepatotoxic properties. Transcriptomic results were bioinformatically evaluated and pointed towards a genotoxic potential of clothianidin. In vitro Comet and γH2AX assays in human HepaRG hepatoma cells, complemented by in silico analyses of mutagenicity, were conducted as follow-up experiments to check if the genotoxicity alert from the transcriptomic study is in line with results from a battery of guideline genotoxicity studies. Our results illustrate the combined use of toxicogenomics, classic toxicological data and new approach methods in risk assessment. By means of a weight-of-evidence decision, we conclude that clothianidin does most likely not pose genotoxic risks to humans.


Assuntos
Mutagênicos , Transcriptoma , Animais , Dano ao DNA , Guanidinas , Humanos , Mamíferos , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Neonicotinoides/toxicidade , Ratos , Medição de Risco , Tiazóis
5.
Toxicology ; 459: 152857, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34273450

RESUMO

In real life, organisms are exposed to complex mixtures of chemicals at low concentration levels, whereas research on toxicological effects is mostly focused on single compounds at comparably high doses. Mixture effects deviating from the assumption of additivity, especially synergistic effects, are of concern. In an adverse outcome pathway (AOP)-guided manner, we analyzed the accumulation of triglycerides in human HepaRG liver cells by a mixture of eight steatotic chemicals (amiodarone, benzoic acid, cyproconazole, flusilazole, imazalil, prochloraz, propiconazole and tebuconazole), each present below its individual effect concentration at 1-3 µM. Pronounced and significantly enhanced triglyceride accumulation was observed with the mixture, and similar effects were seen at the level of pregnane-X-receptor activation, a molecular initiating event leading to hepatic steatosis. Transcript pattern analysis indicated subtle pro-steatotic changes at low compound concentrations, which did not exert measurable effects on cellular triglycerides. Mathematical modeling of mixture effects indicated potentially more than additive behavior using a model for compounds with similar modes of action. The present data underline the usefulness of AOP-guided in vitro testing for the identification of mixture effects and highlight the need for further research on chemical mixtures and harmonization of data interpretation of mixture effects.


Assuntos
Misturas Complexas/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Triglicerídeos/metabolismo , Algoritmos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Marcadores Genéticos , Humanos , Modelos Teóricos , Receptor de Pregnano X/metabolismo , Transcrição Gênica
6.
Arch Toxicol ; 95(4): 1397-1411, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33575850

RESUMO

The liver is constantly exposed to mixtures of hepatotoxic compounds, such as food contaminants and pesticides. Dose addition is regularly assumed for mixtures in risk assessment, which however might not be sufficiently protective in case of synergistic effects. Especially the prediction of combination effects of substances which do not share a common adverse outcome (AO) might be problematic. In this study, the focus was on the endpoint liver triglyceride accumulation in vitro, an indicator of hepatic fatty acid changes. The hepatotoxic compounds difenoconazole, propiconazole and tebuconazole were chosen which cause hepatic fatty acid changes in vivo, whereas fludioxonil was chosen as a hepatotoxic substance not causing fatty acid changes. Triglyceride accumulation was analyzed for combinations of steatotic and non-steatotic pesticides in human HepaRG hepatocarcinoma cells. Investigations revealed a potentiation of triglyceride accumulation by mixtures of the steatotic compounds with the non-steatotic fludioxonil, as compared to the single compounds. Mathematical modeling of combination effects indicated more than additive effects for the tested combinations if the method by Chou was applied, and a decrease in EC50 values of the steatotic compounds when applied in mixtures. Use of an adverse outcome pathway (AOP)-driven testing strategy for liver steatosis showed interactions of the test compounds with the nuclear receptors AHR, CAR and PXR, as well as a downregulation of ACOX2. An ACOX2-dependent mechanism underlying the observed mixture effect could not be verified using a siRNA approach. By contrast, a toxicokinetic interaction was identified including an inhibition of the metabolic enzyme CYP3A4 by fludioxonil and a decreased metabolic conversion of the CYP3A4 substrate difenoconazole when used in mixture experiments. In conclusion, an interaction by a steatotic and a non-steatotic compound at the toxicokinetic level on the endpoint triglyceride accumulation in vitro was described.


Assuntos
Fígado Gorduroso/induzido quimicamente , Fígado/efeitos dos fármacos , Praguicidas/toxicidade , Triglicerídeos/metabolismo , Rotas de Resultados Adversos , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Dioxolanos/administração & dosagem , Dioxolanos/toxicidade , Dioxóis/administração & dosagem , Dioxóis/toxicidade , Ácidos Graxos/metabolismo , Células Hep G2 , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Modelos Teóricos , Pirróis/administração & dosagem , Pirróis/toxicidade , Triazóis/administração & dosagem , Triazóis/toxicidade
7.
Arch Toxicol ; 95(3): 1039-1053, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33426623

RESUMO

Co-occurrence of pesticide residues in food commodities raises a potential safety issue as their mixture effects on human health are largely unknown. In a previous study, we reported the toxicological effects (pathology and histopathology) of imazalil (IMZ), thiacloprid (THI), and clothianidin (CTD) alone and in binary mixtures in a 28-day oral gavage study in female Wistar rats. Five dose levels (up to 350 mg/kg body weight/day) ranging from a typical toxicological reference value to a clear effect dose were applied. In the present study, we undertook a transcriptomics analysis of rat livers by means of total RNA sequencing (RNA-Seq). Bioinformatic data analysis involving Ingenuity Pathway Analysis (IPA) was used to gain mechanistic information on hepatotoxicity-related pathways affected after treatment with the pesticides, alone and in mixtures. Our data show that 2986 genes were differentially regulated by CTD while IMZ and THI had effects on 194 and 225 genes, respectively. All three individual compounds shared a common subset of genes whose network is associated with xenobiotic metabolism and nuclear receptor activation. Similar networks were retrieved for the mixtures. Alterations in the expression of individual genes were in line with the assumption of dose addition. Our results bring new insight into the hepatotoxicity mechanisms of IMZ, THI, and CTD and their mixtures.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Guanidinas/toxicidade , Imidazóis/toxicidade , Neonicotinoides/toxicidade , Tiazinas/toxicidade , Tiazóis/toxicidade , Animais , Doença Hepática Induzida por Substâncias e Drogas/genética , Relação Dose-Resposta a Droga , Feminino , Perfilação da Expressão Gênica , Guanidinas/administração & dosagem , Imidazóis/administração & dosagem , Neonicotinoides/administração & dosagem , Praguicidas/toxicidade , Ratos , Ratos Wistar , Análise de Sequência de RNA , Tiazinas/administração & dosagem , Tiazóis/administração & dosagem
8.
Arch Toxicol ; 95(1): 117-133, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33150952

RESUMO

Most drugs and xenobiotics are metabolized in the liver. Amongst others, different cytochrome P450 (CYP) enzymes catalyze the metabolic conversion of foreign compounds, and various transport proteins are engaged in the excretion of metabolites from the hepatocytes. Inter-species and inter-individual differences in the hepatic levels and activities of drug-metabolizing enzymes and transporters result from genetic as well as from environmental factors, and play a decisive role in determining the pharmacokinetic properties of a compound in a given test system. To allow for a meaningful comparison of results from metabolism studies, it is, therefore, of utmost importance to know about the specific metabolic properties of the test systems, especially about the levels of metabolic enzymes such as the CYPs. Using a targeted proteomics approach, we, therefore, compared the hepatic levels of important CYP enzymes and transporters in different experimental systems in vivo and in vitro, namely Wistar rats, C57/Bl6 mice, mice humanized for the two xeno-sensing receptors PXR (pregnane-X-receptor) and CAR (constitutive androstane receptor), mice with human hepatocyte-repopulated livers, human HepaRG hepatocarcinoma cells, primary human hepatocytes, and human liver biopsies. In addition, the effects of xenobiotic inducers of drug metabolism on CYP enzymes and transporters were analyzed in selected systems. This study for the first time presents a comprehensive overview of similarities and differences in important drug metabolism-related proteins among the different experimental models.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Preparações Farmacêuticas/metabolismo , Xenobióticos/metabolismo , Animais , Transporte Biológico , Biotransformação , Linhagem Celular , Receptor Constitutivo de Androstano , Humanos , Isoenzimas , Camundongos Endogâmicos C57BL , Receptor de Pregnano X/metabolismo , Ratos Wistar , Receptores Citoplasmáticos e Nucleares/metabolismo , Especificidade da Espécie , Especificidade por Substrato
9.
Cells ; 9(5)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403288

RESUMO

Azole fungicides, especially triazole compounds, are widely used in agriculture and as pharmaceuticals. For a considerable number of agricultural azole fungicides, the liver has been identified as the main target organ of toxicity. A number of previous studies points towards an important role of nuclear receptors such as the constitutive androstane receptor (CAR), the pregnane-X-receptor (PXR), or the aryl hydrocarbon receptor (AHR), within the molecular pathways leading to hepatotoxicity of these compounds. Nuclear receptor-mediated hepatic effects may comprise rather adaptive changes such as the induction of drug-metabolizing enzymes, to hepatocellular hypertrophy, histopathologically detectable fatty acid changes, proliferation of hepatocytes, and the promotion of liver tumors. Here, we present a comprehensive review of the current knowledge of the interaction of major agricultural azole-class fungicides with the three nuclear receptors CAR, PXR, and AHR in vivo and in vitro. Nuclear receptor activation profiles of the azoles are presented and related to histopathological findings from classic toxicity studies. Important issues such as species differences and multi-receptor agonism and the consequences for data interpretation and risk assessment are discussed.


Assuntos
Azóis/farmacologia , Fungicidas Industriais/farmacologia , Fígado/metabolismo , Preparações Farmacêuticas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Xenobióticos/metabolismo , Animais , Humanos
10.
Food Chem Toxicol ; 140: 111306, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32229153

RESUMO

Humans are exposed to pesticide residues through various food products. As these residues can occur in mixtures, there is a need to investigate possible mixture effects on human health. Recent exposure studies revealed the preponderance of imazalil, thiacloprid, and clothianidin in food diets. In this study, we assessed their toxicity alone and in binary mixtures in a 28-day gavage study in female Wistar rats. Five dose levels (up to 350 mg/kg bw/day) ranging from a typical toxicological reference value to a clear effect dose were applied. Data show that the liver was a target organ of all pesticides and their mixtures. Increases in liver weight were observed and histopathological examination revealed centrilobular hepatocellular hypertrophy and cytoplasm degeneration for all treatment conditions. No accumulation of hepatic triglycerides was reported. Tissue residue analysis showed altered pesticide residues in the liver and the kidney when being in mixture as compared to the levels of pesticide residues for the single compound treatment, indicating possible toxicokinetic interactions. Overall, all mixtures appeared to follow the additivity concept, even though quantitative analysis was limited for some endpoints due to the semi-quantitative nature of the data, raising no specific concern for the risk assessment of the examined pesticides.


Assuntos
Guanidinas/toxicidade , Imidazóis/toxicidade , Fígado/efeitos dos fármacos , Neonicotinoides/toxicidade , Praguicidas/toxicidade , Tiazinas/toxicidade , Tiazóis/toxicidade , Animais , Peso Corporal/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/patologia , Feminino , Rim/efeitos dos fármacos , Fígado/patologia , Nível de Efeito Adverso não Observado , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Wistar , Medição de Risco
11.
Arch Toxicol ; 93(8): 2321-2333, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31254001

RESUMO

Consumers are constantly exposed to chemical mixtures such as multiple residues of different pesticides via the diet. This raises questions concerning potential combination effects, especially because these substances are tested for regulatory purposes on an individual basis. With approximately 500 active substances approved as pesticides, there are too many possible combinations to be tested in standard animal experiments generally requested for regulatory purposes. Therefore, the development of in vitro tools and alternative testing strategies for the assessment of mixture effects is extremely important. As a first step in the development of such in vitro tools, we used (tri)azoles as model substances in a set of different cell lines derived from the primary target organ of these substances, the liver (human: HepaRG, rat: H4IIE). Concentrations were reconciled with measured tissue concentrations obtained from in vivo experiments to ensure comparable effect levels. The effects of the substances were subsequently analyzed by transcriptomics and metabolomics techniques and compared to data from corresponding in vivo studies. The results show that similar toxicity pathways are affected by substances and combinations, thus indicating a similar mode of action and additive effects. Two biomarkers obtained by the approach, CAR and Cyp1A1, were used for mixture toxicity modeling and confirmed the concentration-additive effects, thus supporting the selected testing strategy and raising hope for the development of in vitro methods suitable to detect combination effects and prioritize mixtures of concern for further testing.


Assuntos
Perfilação da Expressão Gênica/métodos , Fígado/efeitos dos fármacos , Metabolômica/métodos , Praguicidas/toxicidade , Testes de Toxicidade/métodos , Triazóis/toxicidade , Animais , Linhagem Celular , Células Hep G2 , Humanos , Ratos , Medição de Risco , Especificidade da Espécie
12.
Arch Toxicol ; 93(5): 1311-1322, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30989312

RESUMO

Triazoles are commonly used fungicides which show liver toxicity in rodent studies. While hepatocellular hypertrophy is the most prominent finding, some triazoles have also been reported to cause hepatocellular steatosis. The aim of our study was to elucidate molecular mechanisms of triazole-mediated steatosis. Therefore, we used the two triazoles propiconazole (Pi) and tebuconazole (Te) as test compounds in in vitro assays using the human hepatocarcinoma cell lines HepG2 and HepaRG. Triglyceride accumulation was measured using the Adipored assay and by a gas-chromatographic method. Reporter gene analyses were used to assess the ability of Pi and Te to activate nuclear receptors, which are described as the molecular initiators in the adverse outcome pathway (AOP) for liver steatosis. The expression of steatosis-associated genes was investigated by RT-PCR. Mechanistic analyses of triazole-mediated steatosis were performed using HepaRG subclones that are deficient in different nuclear receptors. Pi and Te both interacted with the constitutive androstane receptor (CAR), the peroxisome proliferator-activated receptor alpha (PPARα), and the pregnane X receptor (PXR). Both compounds induced expression of steatosis-related genes and cellular triglyceride accumulation. The knockout of PXR in HepaRG cells, but not the CAR knockout, abolished triazole-induced triglyceride accumulation, thus underlining the crucial role of PXR in hepatic steatosis resulting from exposure to these fungicides. In conclusion, our findings provide new insight into the molecular mechanisms of steatosis induction by triazole fungicides and identify PXR as a critical mediator of this process.


Assuntos
Fungicidas Industriais/toxicidade , Receptor de Pregnano X/metabolismo , Triazóis/toxicidade , Carcinoma Hepatocelular/patologia , Linhagem Celular , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/fisiopatologia , Técnicas de Inativação de Genes , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Receptor de Pregnano X/genética
13.
Life Sci Alliance ; 2(2)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30923191

RESUMO

All cells and organisms exhibit stress-coping mechanisms to ensure survival. Cytoplasmic protein-RNA assemblies termed stress granules are increasingly recognized to promote cellular survival under stress. Thus, they might represent tumor vulnerabilities that are currently poorly explored. The translation-inhibitory eIF2α kinases are established as main drivers of stress granule assembly. Using a systems approach, we identify the translation enhancers PI3K and MAPK/p38 as pro-stress-granule-kinases. They act through the metabolic master regulator mammalian target of rapamycin complex 1 (mTORC1) to promote stress granule assembly. When highly active, PI3K is the main driver of stress granules; however, the impact of p38 becomes apparent as PI3K activity declines. PI3K and p38 thus act in a hierarchical manner to drive mTORC1 activity and stress granule assembly. Of note, this signaling hierarchy is also present in human breast cancer tissue. Importantly, only the recognition of the PI3K-p38 hierarchy under stress enabled the discovery of p38's role in stress granule formation. In summary, we assign a new pro-survival function to the key oncogenic kinases PI3K and p38, as they hierarchically promote stress granule formation.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Estresse Fisiológico/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Arsenitos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção
14.
Arch Toxicol ; 92(12): 3471-3486, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30293151

RESUMO

Consumers are exposed to pesticide residues and other food contaminants via the diet. Both can exert adverse effects on different target organs via the activation of nuclear receptor pathways. Hepatotoxic effects of the widely used triazole fungicide propiconazole (Pi) are generally attributed to the activation of the constitutive androstane receptor (CAR) or the pregnane X receptor (PXR). We now investigated the effects of Pi on the aryl hydrocarbon receptor (AHR) and possible mixture toxicity when Pi is present in combination with BbF, an AHR ligand. In silico docking simulations indicate that Pi can bind to human AHR. Subsequent dual luciferase reporter gene assays in human HepG2 cells showed that Pi activates the AHR in vitro. This concentration-dependent activation was confirmed by real-time RT-PCR analyses of the model AHR target genes CYP1A1 and CYP1A2 in human HepaRG and HepG2 cells. In addition, induction of CYP1A1 protein levels and enzyme activity were recorded. Similarly, increased mRNA expression and enzyme activity of Cyp1a1 and Cyp1a2 was observed in livers of rats treated with Pi for 28 days via the diet. Gene expression analysis in AHR-knockout HepaRG cells showed no induction of CYP1A1 and CYP1A2, whereas gene expression in CAR-, and PXR-knockout cells was induced. Finally, mixture effects of Pi and BbF were analyzed in human cell lines: modeling of concentration-response curves revealed concentration additivity. In conclusion, our results demonstrate that the triazole Pi is an activator of AHR in silico, in vitro and in vivo and causes additive effects with an established AHR ligand.


Assuntos
Fluorenos/toxicidade , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Triazóis/toxicidade , Animais , Linhagem Celular , Simulação por Computador , Receptor Constitutivo de Androstano , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Relação Dose-Resposta a Droga , Fluorenos/administração & dosagem , Fungicidas Industriais/administração & dosagem , Fungicidas Industriais/toxicidade , Perfilação da Expressão Gênica/métodos , Técnicas de Inativação de Genes , Genes Reporter , Células Hep G2 , Humanos , Ligantes , Fígado/efeitos dos fármacos , Simulação de Acoplamento Molecular , Ratos , Ratos Wistar , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Triazóis/administração & dosagem
15.
Toxicol Sci ; 163(1): 170-181, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29420809

RESUMO

Analyzing mixture toxicity requires an in-depth understanding of the mechanisms of action of its individual components. Substances with the same target organ, same toxic effect and same mode of action (MoA) are believed to cause additive effects, whereas substances with different MoAs are assumed to act independently. Here, we tested 2 triazole fungicides, propiconazole, and tebuconazole (Te), for individual and combined effects on liver toxicity-related endpoints. Both triazoles are proposed to belong to the same cumulative assessment group and are therefore thought to display similar and additive behavior. Our data show that Te is an antagonist of the constitutive androstane receptor (CAR) in rats and humans, while propiconazole is an agonist of this receptor. Both substances activate the pregnane X-receptor (PXR) and further induce mRNA expression of CYP3A4. CYP3A4 enzyme activity, however, is inhibited by propiconazole. For common targets of PXR and CAR, the activation of PXR by Te overrides CAR inhibition. In summary, propiconazole and Te affect different hepatotoxicity-relevant cellular targets and, depending on the individual endpoint analyzed, act via similar or dissimilar mechanisms. The use of molecular data based on research in human cell systems extends the picture to refine cumulative assessment group grouping and substantially contributes to the understanding of mixture effects of chemicals in biological systems.


Assuntos
Fungicidas Industriais/farmacologia , Hepatócitos/efeitos dos fármacos , Receptor de Pregnano X/agonistas , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Triazóis/farmacologia , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Receptor Constitutivo de Androstano , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Sinergismo Farmacológico , Hepatócitos/metabolismo , Humanos , Simulação de Acoplamento Molecular , Receptor de Pregnano X/genética , Ratos , Receptores Citoplasmáticos e Nucleares/genética , Especificidade por Substrato , Transfecção
16.
Regul Toxicol Pharmacol ; 88: 227-237, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28655655

RESUMO

Evaluation of data relevance, reliability and contribution to uncertainty is crucial in regulatory health risk assessment if robust conclusions are to be drawn. Whether a specific study is used as key study, as additional information or not accepted depends in part on the criteria according to which its relevance and reliability are judged. In addition to GLP-compliant regulatory studies following OECD Test Guidelines, data from peer-reviewed scientific literature have to be evaluated in regulatory risk assessment of pesticide active substances. Publications should be taken into account if they are of acceptable relevance and reliability. Their contribution to the overall weight of evidence is influenced by factors including test organism, study design and statistical methods, as well as test item identification, documentation and reporting of results. Various reports make recommendations for improving the quality of risk assessments and different criteria catalogues have been published to support evaluation of data relevance and reliability. Their intention was to guide transparent decision making on the integration of the respective information into the regulatory process. This article describes an approach to assess the relevance and reliability of experimental data from guideline-compliant studies as well as from non-guideline studies published in the scientific literature in the specific context of uncertainty and risk assessment of pesticides.


Assuntos
Praguicidas/toxicidade , Medição de Risco , Incerteza , Tomada de Decisões , Fidelidade a Diretrizes , Humanos , Legislação de Medicamentos , Reprodutibilidade dos Testes
17.
Arch Toxicol ; 91(8): 2895-2907, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28058446

RESUMO

The agricultural fungicides cyproconazole and prochloraz exhibit hepatotoxicity in rodent studies and are tumorigenic following chronic exposure. Both substances are suspected to act via a CAR (constitutive androstane receptor)/PXR (pregnane-X-receptor)-dependent mechanism. Human relevance of these findings is under debate. A 28-day toxicity study was conducted in mice with humanized CAR and PXR (hCAR/hPXR) with two dose levels (50 or 500 ppm) of both substances, using the model CAR activator phenobarbital as a reference. Results were compared to wild-type mice. A treatment-related increase in liver weights was observed for all three substances at least at the high-dose level. Changes in the expression of classic CAR/PXR target genes such as Cyp2b10 were induced by cyproconazole and phenobarbital in both genotypes, while prochloraz treatment resulted in gene expression changes indicative of additional aryl hydrocarbon receptor activation, e.g. by up-regulation of Cyp1a1 expression. Cyproconazole-induced effects on CAR-dependent gene expression, liver weight, and hepatic lipid accumulation were more prominent in wild-type mice, where significant genotype differences were observed at the high-dose level. Moreover, high-dose cyproconazole-treated mice from the wild-type group responded with a marked increase in hepatocellular proliferation, while hCAR/hPXR mice did not. In conclusion, our data demonstrate that cyproconazole and PB induce CAR/PXR downstream effects in hepatocytes in vivo via both, the murine and human receptors. At high doses of cyproconazole, however, the responses were clearly more pronounced in wild-type mice, indicating increased sensitivity of rodents to CAR agonist-induced effects in hepatocytes.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Fungicidas Industriais/toxicidade , Imidazóis/toxicidade , Triazóis/toxicidade , Animais , Receptor Constitutivo de Androstano , Relação Dose-Resposta a Droga , Fungicidas Industriais/administração & dosagem , Regulação da Expressão Gênica/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Imidazóis/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenobarbital/farmacologia , Receptor de Pregnano X , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Triazóis/administração & dosagem , Regulação para Cima/efeitos dos fármacos
18.
Int J Environ Res Public Health ; 11(9): 9660-79, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25233012

RESUMO

Consumers are exposed to multiple residues of different pesticides via the diet. Therefore, EU legislation for pesticides requires the evaluation of single active substances as well as the consideration of combination effects. Hence the analysis of combined effects of substances in a broad dose range represents a key challenge to current experimental and regulatory toxicology. Here we report evidence for additive effects for (tri)azole fungicides, a widely used group of antifungal agents, in the human placental cell line Jeg-3. In addition to the triazoles cyproconazole, epoxiconazole, flusilazole and tebuconazole and the azole fungicide prochloraz also pesticides from other chemical classes assumed to act via different modes of action (i.e., the organophosphate chlorpyrifos and the triazinylsulfonylurea herbicide triflusulfuron-methyl) were investigated. Endpoints analysed include synthesis of steroid hormone production (progesterone and estradiol) and gene expression of steroidogenic and non-steroidogenic cytochrome-P-450 (CYP) enzymes. For the triazoles and prochloraz, a dose dependent inhibition of progesterone production was observed and additive effects could be confirmed for several combinations of these substances in vitro. The non-triazoles chlorpyrifos and triflusulfuron-methyl did not affect this endpoint and, in line with this finding, no additivity was observed when these substances were applied in mixtures with prochloraz. While prochloraz slightly increased aromatase expression and estradiol production and triflusulfuron-methyl decreased estradiol production, none of the other substances had effects on the expression levels of steroidogenic CYP-enzymes in Jeg-3 cells. For some triazoles, prochloraz and chlorpyrifos a significant induction of CYP1A1 mRNA expression and potential combination effects for this endpoint were observed. Inhibition of CYP1A1 mRNA induction by the AhR inhibitor CH223191 indicated AhR receptor dependence this effect.


Assuntos
Citocromo P-450 CYP1A1/metabolismo , Disruptores Endócrinos/toxicidade , Fungicidas Industriais/toxicidade , Progesterona/metabolismo , Triazóis/toxicidade , Linhagem Celular , Citocromo P-450 CYP1A1/genética , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Reação em Cadeia da Polimerase em Tempo Real
19.
J Mol Histol ; 42(5): 393-400, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21822615

RESUMO

The gene CTNNB1 encoding ß-catenin is mutated in about 30% of hepatocellular carcinoma, generally often combined with other genetic alterations. In transgenic mice, it has been shown that activation of ß-catenin in more than 70% of all hepatocytes causes immediate proliferation leading to hepatomegaly. In this study we established a novel mouse model where ß-catenin is activated only in individual, dispersed hepatocytes. Hepatocyte-specific expression of activated point-mutated ß-catenin (human ß-catenin(S33Y)) was established using the Cre/loxP system. Expression of several downstream targets of ß-catenin signaling such as glutamine synthetase and several cytochrome P450 isoforms was confirmed by immunostaining. Only a minor portion of hepatocytes expressed the ß-catenin(S33Y) transgene, which were mainly positioned as dispersed individual cells within the normal liver parenchyma. The hepatocytes with activated ß-catenin did not show increased proliferation and the mice did not develop hepatomegaly. In conclusion, activated ß-catenin in single hepatocytes induces a gene expression pattern in hepatocytes which is similar to that of Ctnnb1-mutated mouse liver tumors, but is apparently not sufficient to induce increased cell proliferation. Therefore, onset of proliferation seems to require concomitant activation of ß-catenin in clusters of hepatocytes, suggesting a role of cell-cell communication in this process.


Assuntos
Hepatócitos/metabolismo , Fígado/metabolismo , beta Catenina/metabolismo , Animais , Transformação Celular Neoplásica/patologia , Regulação da Expressão Gênica , Hepatócitos/patologia , Humanos , Imuno-Histoquímica , Fígado/patologia , Camundongos , Camundongos Transgênicos , Proteínas Mutantes/metabolismo , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , beta Catenina/genética
20.
Int J Cancer ; 124(8): 1767-72, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19123478

RESUMO

The receptor for the hepatocyte growth factor/scatter factor (HGF/SF), c-Met, plays a role in tumour promotion, progression and metastasis. In this study, we analysed chemically induced hepatocarcinogenesis in mice lacking a functional HGF receptor in their liver. Control and c-Met deficient mice were injected with a single dose of N-nitrosodiethylamine (DEN, 90 mICROg/g b.wt.) at 6 weeks of age and mice were subsequently kept on a phenobarbital (PB) containing diet (0.05%) for 35 weeks or on control diet. At the end of the experiment, the carcinogenic response in liver of the animals was monitored. Conditional c-met knockout (KO) mice showed a higher prevalence of macroscopically visible liver tumours and of glutamine synthetase positive and glucose-6-phosphatase deficient lesions in liver. Tumour promotion by PB led to significant increases in the number of preneoplastic and neoplastic lesions in liver of both wild-type and c-met knockout mice, with only minor differences in response. Our results indicate that a defect in c-Met-mediated signaling increases chemically induced tumour initiation in liver but does not significantly affect PB-mediated tumour promotion.


Assuntos
Neoplasias Hepáticas/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Animais , Dietilnitrosamina/farmacologia , Glucose-6-Fosfatase/metabolismo , Glutamato-Amônia Ligase/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Masculino , Camundongos , Camundongos Knockout , Tamanho do Órgão , Fenobarbital/toxicidade , Fenótipo , Transdução de Sinais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA