Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38710584

RESUMO

The growing prevalence of fungal infections alongside rising resistance to antifungal drugs poses a significant challenge to public health safety. At the close of the 2000s, major pharmaceutical firms began to scale back on antimicrobial research due to repeated setbacks and diminished economic gains, leaving only smaller companies and research labs to pursue new antifungal solutions. Among various natural sources explored for novel antifungal compounds, antifungal peptides (AFPs) emerge as particularly promising. Despite their potential, AFPs receive less focus than their antibacterial counterparts. These peptides have been sourced extensively from nature, including plants, animals, insects, and especially bacteria and fungi. Furthermore, with advancements in recombinant biotechnology and computational biology, AFPs can also be synthesized in lab settings, facilitating peptide production. AFPs are noted for their wide-ranging efficacy, in vitro and in vivo safety, and ability to combat biofilms. They are distinguished by their high specificity, minimal toxicity to cells, and reduced likelihood of resistance development. This review aims to comprehensively cover AFPs, including their sources-both natural and synthetic-their antifungal and biofilm-fighting capabilities in laboratory and real-world settings, their action mechanisms, and the current status of AFP research. ONE-SENTENCE SUMMARY: This comprehensive review of AFPs will be helpful for further research in antifungal research.


Assuntos
Antifúngicos , Biofilmes , Fungos , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/uso terapêutico , Biofilmes/efeitos dos fármacos , Fungos/efeitos dos fármacos , Animais , Humanos , Micoses/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/química , Farmacorresistência Fúngica , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química
2.
J Inflamm Res ; 17: 1897-1917, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544813

RESUMO

DPP4 (Dipeptidyl-peptidase 4) a versatile protease, emerges as a prominent player in soluble and membrane-bound forms. Its heightened expression has been intimately linked to the initiation and severity of diverse autoimmune diseases, spanning rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis (SSc), inflammatory bowel disease, autoimmune diabetes, and even SARS-CoV-2 infection. Operating as a co-stimulator of T cell activity, DPP4 propels T cell proliferation by binding adenosine deaminase (ADA), thereby augmenting the breakdown of adenosine-an influential inhibitor of T cell proliferation. However, the discovery of a wide range of DPP4 inhibitors has shown promise in alleviating these diseases' signs, symptoms, and severity. The available DPP4 inhibitors have demonstrated significant effectiveness in blocking DPP4 activity. Based on the characterization of their binding mechanisms, three distinct groups of DPP4 inhibitors have been identified: saxagliptin, alogliptin, and sitagliptin, each representing a different class. Elevated levels of angiotensin-converting enzyme 2 (ACE2) expression are associated with producing various coronavirus peptidases. With its anti-inflammatory properties, Sitagliptin may assist COVID-19 patients in preventing and managing cytokine storms. This comprehensive review delves into the burgeoning realm of DPP4 inhibitors as therapeutic interventions for diverse autoimmune diseases. With a discerning focus on their efficacy, the investigation sheds light on their remarkable capacity to alleviate the burdensome signs and symptoms intricately linked to these conditions.

3.
J Clin Med ; 12(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37176567

RESUMO

Cancer is the primary cause of death in economically developed countries and the second leading cause in developing countries. Colorectal cancer (CRC) is the third most common cause of cancer-related deaths worldwide. Risk factors for CRC include obesity, a diet low in fruits and vegetables, physical inactivity, and smoking. CRC has a poor prognosis, and there is a critical need for new diagnostic and prognostic biomarkers to reduce related deaths. Recently, studies have focused more on molecular testing to guide targeted treatments for CRC patients. The most crucial feature of activated immune cells is the production and release of growth factors and cytokines that modulate the inflammatory conditions in tumor tissues. The cytokine network is valuable for the prognosis and pathogenesis of colorectal cancer as they can aid in the cost-effective and non-invasive detection of cancer. A large number of interleukins (IL) released by the immune system at various stages of CRC can act as "biomarkers". They play diverse functions in colorectal cancer, and include IL-4, IL-6, IL-8, IL-11, IL-17A, IL-22, IL-23, IL-33, TNF, TGF-ß, and vascular endothelial growth factor (VEGF), which are pro-tumorigenic genes. However, there are an inadequate number of studies in this area considering its correlation with cytokine profiles that are clinically useful in diagnosing cancer. A better understanding of cytokine levels to establish diagnostic pathways entails an understanding of cytokine interactions and the regulation of their various biochemical signaling pathways in healthy individuals. This review provides a comprehensive summary of some interleukins as immunological biomarkers of CRC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA