Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202610

RESUMO

A new water-soluble thermosensitive star-like copolymer, dextran-graft-poly-N-iso-propilacrylamide (D-g-PNIPAM), was created and characterized by various techniques (size-exclusion chromatography, differential scanning calorimetry, Fourier-transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) spectroscopy). The viability of cancer cell lines (human transformed cervix epithelial cells, HeLa) as a model for cancer cells was studied using MTT and Live/Dead assays after incubation with a D-g-PNIPAM copolymer as a carrier for the drug doxorubicin (Dox) as well as a D-g-PNIPAM + Dox mixture as a function of the concentration. FTIR spectroscopy clearly indicated the complex formation of Dox with the D-g-PNIPAM copolymer. The size distribution of particles in Hank's solution was determined by the DLS technique at different temperatures. The in vitro uptake of the studied D-g-PNIPAM + Dox nanoparticles into cancer cells was demonstrated by confocal laser scanning microscopy. It was found that D-g-PNIPAM + Dox nanoparticles in contrast to Dox alone showed higher toxicity toward cancer cells. All of the aforementioned facts indicate a possibility of further preclinical studies of the water-soluble D-g-PNIPAM particles' behavior in animal tumor models in vivo as promising carriers of anticancer agents.

2.
Nanoscale Res Lett ; 13(1): 286, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209630

RESUMO

The aim of the proposed work was to analyze the toxicity of oxidized carbon nanotubes (CNTox), functionalized by doxorubicin (CNT-Dox) and fluorescein (CNT-FITC) on cell and organism level. The cytotoxic effect of CNTox, CNT-Dox, and CNT-FITC was analyzed on tumor cells in vitro (2-D, 3-D cultures) and on Balb2/c mice model in vivo. As a result, it was demonstrated the possibility of doxorubicin immobilization on the surface of CNT and controlled release of doxorubicin (Dox) from the surface of CNT. Dox immobilization coincident with decreasing cytotoxic effect CNT-Dox compared with free Dox. Breakdown of peptide bonds with CNT surface led to the release of doxorubicin and dose-dependent enhancement of the cytotoxic effect of CNTs and Dox. The combined cytotoxic effect from CNTs, Dox, and trypsin on the survival of tumor cells was shown. At the organism level, it was investigated the effect of the obtained nanostructures on the state of hepatic enzymatic system, the protein metabolism, and cell blood composition of the experimental animals. CNTox influence in vivo model was statistically the same as control. CNT-Dox demonstrated lower total organism toxic effect compared to the pure doxorubicin. Deviations in the cell blood composition indicated a general toxic effect of CNT-Dox, but it was more moderate compared with of pure doxorubicin. From the data obtained, we concluded that binding CNTs with doxorubicin allows reducing toxicity of the doxorubicin on the general biochemical indicators of blood and violations in the blood cells composition in vivo. At the same time, the combined effect of CNTs and doxorubicin after drug release allowed us to achieve greater efficacy in suppressing tumor growth in vitro.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA