RESUMO
The impact of polymer stereoregularity on its interactions with peptides, proteins and bacteria strains was studied for three stereoregular forms of poly(tert-butyl methacrylate) (PtBMA): isotactic (iso), atactic (at) and syndiotactic (syn) PtBMA. Principal component analysis of the time-of-flight secondary ion mass spectrometry data recorded for thin polymer films indicated a different orientation of ester groups, which in the case of iso-PtBMA are exposed away from the surface whereas for at-PtBMA and syn-PtBMA these are located deeper within the film. This arrangement of chemical groups modified the interactions of iso-PtBMA with biomolecules when compared to at-PtBMA and syn-PtBMA. For peptides, the affected interactions were explained by the preferential hydrogen bonding and electrostatic interaction between the exposed polar ester groups of iso-PtBMA and positively charged peptides. In turn, for protein adsorption no impact on the amount of adsorbed proteins was observed. However, the polymer stereoregularity influenced the orientation of immunoglobulin G and induced conformational changes in bovine serum albumin structure. Moreover, the impact of polymer stereoregularity occurred equally for their interactions with Gram-positive bacteria (S. aureus), which absorbed preferentially onto iso-PtBMA films as compared to two other stereoregularities.
Assuntos
Polímeros , Staphylococcus aureus , Metacrilatos , Peptídeos , Soroalbumina BovinaRESUMO
A key challenge for carbon dioxide reduction on Cu-based catalysts is its low faradic efficiency (FE) and selectivity towards higher-value products, e.g., ethylene. The main factor limiting the possibilities of long-term applications of Cu-based gas diffusion electrodes (GDE) is a relatively fast drop in the catalytic activity of copper layers. One of the solutions to the catalyst stability problem may be an in situ reconstruction of the catalyst during the process. It was observed that the addition of a small amount of copper lactate to the electrolyte results in increased Faradaic efficiency for ethylene formation. Moreover, the addition of copper lactate increases the lifetime of the catalytic layer ca. two times and stabilizes the Faradaic efficiency of the electroreduction of CO2 to ethylene at ca. 30%. It can be concluded that in situ deposition of copper through reduction of copper lactate complexes present in the electrolyte provides new, stable, and selective active sites, promoting the reduction of CO2 to ethylene.
RESUMO
Bimetallic Co-Pt nanorods exhibit an enhanced capacity for the production of gas from liquid-phase chemicals. Based on the systematic structural and magnetic characterization we discuss potential applications of these hybrid nanostructures for localized fuel generation in microdevices. Experimental proof of the feasibility for controlling the rate of catalytic reaction via external magnetic stimuli is shown. This unique functionality makes these hybrids promising candidates for optimizing the energy conversion rate in microfluidics fuel cells.
RESUMO
Hybrid materials play an essential role in the development of the energy storage technologies since a multi-constituent system merges the properties of the individual components. Apart from new features and enhanced performance, such an approach quite often allows the drawbacks of single components to be diminished or reduced entirely. The goal of this paper was to prepare and characterize polymer-metal hydroxide (polypyrrole-nickel hydroxide, PPy-Ni(OH)2) nanowire arrays demonstrating good electrochemical performance. Nanowires were fabricated by potential pulse electrodeposition of pyrrole and nickel hydroxide into nanoporous anodic alumina oxide (AAO) template. The structural features of as-obtained PPy-Ni(OH)2 hybrid nanowires were characterized using FE-SEM and TEM analysis. Their chemical composition was confirmed by energy-dispersive x-ray spectroscopy (EDS). The presence of nickel hydroxide in the synthesized PPy-Ni(OH)2 nanowire array was investigated by X-ray photoelectron spectroscopy (XPS). Both FE-SEM and TEM analyses confirmed that the obtained nanowires were composed of a polymer matrix with nanoparticles dispersed within. EDS and XPS techniques confirmed the presence of PPy-Ni(OH)2 in the nanowire array obtained. Optimal working potential range (i.e., available potential window), charge propagation, and cyclic stability of the electrodes were determined with cyclic voltammetry (CV) at various scan rates. Interestingly, the electrochemical stability window for the aqueous electrolyte at PPy-Ni(OH)2 nanowire array electrode was remarkably wider (ca. 2 times) in comparison with the non-modified PPy electrode. The capacitance values, calculated from cyclic voltammetry performed at 20 mV s-1, were 25 F cm-2 for PPy and 75 F cm-2 for PPy-Ni(OH)2 array electrodes. The cyclic stability of the PPy nanowire array electrode up to 100 cycles showed a capacitance fade of about 13%.
RESUMO
The growing demand for clean energy catalyzes the development of new devices capable of generating electricity from renewable energy resources. One of the possible approaches focuses on the use of thermoelectric materials (TE), which may utilize waste heat, water, and solar thermal energy to generate electrical power. An improvement of the performance of such devices may be achieved through the development of composites made of an organic matrix filled with nanostructured thermoelectric materials working in a synergetic way. The first step towards such designs requires a better understanding of the fundamental interactions between available materials. In this paper, this matter is investigated and the questions regarding the change of electrical and thermal properties of nanocomposites based on low-conductive polypyrrole enriched with bismuth nanowires of well-defined geometry and morphology is answered. It is clearly demonstrated that the electrical conductivity and the Seebeck coefficient may be tuned either simultaneously or separately within particular Bi NWs content ranges, and that both parameters may be increased at the same time.