Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Bioenerg Biomembr ; 56(3): 205-219, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38436904

RESUMO

The plasma membrane Ca2+-ATPase (PMCA) is crucial for the fine tuning of intracellular calcium levels in eukaryotic cells. In this study, we show the presence of CARC sequences in all human and rat PMCA isoforms and we performed further analysis by molecular dynamics simulations. This analysis focuses on PMCA1, containing three CARC motifs, and PMCA4, with four CARC domains. In PMCA1, two CARC motifs reside within transmembrane domains, while the third is situated at the intracellular interface. The simulations depict more stable RMSD values and lower RMSF fluctuations in the presence of cholesterol, emphasizing its potential stabilizing effect. In PMCA4, a distinct dynamic was found. Notably, the total energy differences between simulations with cholesterol and phospholipids are pronounced in PMCA4 compared to PMCA1. RMSD values for PMCA4 indicate a more energetically favorable conformation in the presence of cholesterol, suggesting a robust interaction between CARCs and this lipid in the membranes. Furthermore, RMSF analysis for CARCs in both PMCA isoforms exhibit lower values in the presence of cholesterol compared to POPC alone. The analysis of H-bond occupancy and total energy values strongly suggests the potential interaction of CARCs with cholesterol. Given the crucial role of PMCAs in physiological calcium regulation and their involvement in diverse pathological processes, this study underscores the significance of CARC motifs and their interaction with cholesterol in elucidating PMCA function. These insights into the energetic preferences associated with CARC-cholesterol interactions offer valuable implications for understanding PMCA function in maintaining calcium homeostasis and addressing potential associated pathologies.


Assuntos
Colesterol , ATPases Transportadoras de Cálcio da Membrana Plasmática , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , Colesterol/metabolismo , Humanos , Animais , Ratos , Simulação de Dinâmica Molecular , Motivos de Aminoácidos , Membrana Celular/metabolismo
2.
Arch Med Res ; 55(2): 102937, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38301446

RESUMO

BACKGROUND: The nasal vaccine HB-ATV-8 has emerged as a promising approach for NAFLD (non-alcoholic fatty liver disease) and atherosclerosis prevention. HB-ATV-8 contains peptide seq-1 derived from the carboxy-end of the Cholesteryl Ester Transfer Protein (CETP), shown to reduce liver fibrosis, inflammation, and atherosclerotic plaque formation in animal models. Beyond the fact that this vaccine induces B-cell lymphocytes to code for antibodies against the seq-1 sequence, inhibiting CETP's cholesterol transfer activity, we have hypothesized that beyond the modulation of CETP activity carried out by neutralizing antibodies, the observed molecular effects may also correspond to the direct action of peptide seq-1 on diverse cellular systems and molecular features involved in the development of liver fibrosis. METHODS: The HepG2 hepatoma-derived cell line was employed to establish an in vitro steatosis model. To obtain a conditioned cell medium to be used with hepatic stellate cell (HSC) cultures, HepG2 cells were exposed to fatty acids or fatty acids plus peptide seq-1, and the culture medium was collected. Gene regulation of COL1A1, ACTA2, TGF-ß, and the expression of proteins COL1A1, MMP-2, and TIMP-2 were studied. AIM: To establish an in vitro steatosis model employing HepG2 cells that mimics molecular processes observed in vivo during the onset of liver fibrosis. To evaluate the effect of peptide Seq-1 on lipid accumulation and pro-fibrotic responses. To study the effect of Seq-1-treated steatotic HepG2 cell supernatants on lipid accumulation, oxidative stress, and pro-fibrotic responses in HSC. RESULTS AND CONCLUSION: Peptide seq-1-treated HepG2 cells show a downregulation of COLIA1, ACTA2, and TGF-ß genes, and a decreased expression of proteins such as COL1A1, MMP-2, and TIMP-2, associated with the remodeling of extracellular matrix components. The same results are observed when HSCs are incubated with peptide Seq-1-treated steatotic HepG2 cell supernatants. The present study consolidates the nasal vaccine HB-ATV-8 as a new prospect in the treatment of NASH directly associated with the development of cardiovascular disease.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Vacinas , Animais , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Inibidor Tecidual de Metaloproteinase-2/farmacologia , Metaloproteinase 2 da Matriz , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Regulação para Baixo , Hepatócitos/metabolismo , Fibrose , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Ácidos Graxos/metabolismo , Lipídeos/farmacologia , Fígado/metabolismo
3.
Mol Med ; 28(1): 157, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536294

RESUMO

BACKGROUND: Sepsis is a syndrome where the dysregulated host response to infection threatens the life of the patient. The isoform of the cholesteryl-ester transfer protein (CETPI) is synthesized in the small intestine, and it is present in human plasma. CETPI and peptides derived from its C-terminal sequence present the ability to bind and deactivate bacterial lipopolysaccharides (LPS). The present study establishes the relationship between the plasma levels of CETPI and disease severity of sepsis due to Gram-negative bacteria. METHODS: Plasma samples from healthy subjects and patients with positive blood culture for Gram-negative bacteria were collected at the Intensive Care Unit (ICU) of INCMNSZ (Mexico City). 47 healthy subjects, 50 patients with infection, and 55 patients with sepsis and septic shock, were enrolled in this study. CETPI plasma levels were measured by an enzyme-linked immunosorbent assay and its expression confirmed by Western Blot analysis. Plasma cytokines (IL-1ß, TNFα, IL-6, IL-8, IL-12p70, IFNγ, and IL-10) were measured in both, healthy subjects, and patients, and directly correlated with their CETPI plasma levels and severity of clinical parameters. Sequential Organ Failure Assessment (SOFA) scores were evaluated at ICU admission and within 24 h of admission. Plasma LPS and CETPI levels were also measured and studied in patients  with liver dysfunction. RESULTS: The level of CETPI in plasma was found to be higher in patients with positive blood culture for Gram-negative bacteria that in control subjects, showing a direct correlation with their SOFA values. Accordingly, septic shock patients showing a high CETPI plasma concentration, presented a negative correlation with cytokines IL-8, IL-1ß, and IL-10. Also, in patients  with liver dysfunction, since higher CETPI levels correlated with a high plasma LPS concentration, LPS neutralization carried out by CETPI might be considered a physiological response that will have to be studied in detail. CONCLUSIONS: Elevated levels of plasma CETPI were associated with disease severity and organ failure in patients  with Gram-negative bacteraemia, defining CETPI as a protein implicated in the systemic response to LPS.


Assuntos
Bacteriemia , Proteínas de Transferência de Ésteres de Colesterol , Sepse , Choque Séptico , Humanos , Citocinas , Ésteres , Interleucina-10 , Interleucina-8 , Lipopolissacarídeos , Peptídeos , Isoformas de Proteínas , Proteínas de Transferência de Ésteres de Colesterol/sangue
4.
Cells ; 11(22)2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36429123

RESUMO

The knowledge accumulated throughout the years about liver regeneration has allowed a better understanding of normal liver physiology, by reconstructing the sequence of steps that this organ follows when it must rebuild itself after being injured. The scientific community has used several interdisciplinary approaches searching to improve liver regeneration and, therefore, human health. Here, we provide a brief history of the milestones that have advanced liver surgery, and review some of the new insights offered by the interdisciplinary work using animals, in vitro models, tissue engineering, or mathematical models to help advance the knowledge on liver regeneration. We also present several of the main approaches currently available aiming at providing liver support and overcoming organ shortage and we conclude with some of the challenges found in clinical practice and the ethical issues that have concomitantly emerged with the use of those approaches.


Assuntos
Regeneração Hepática , Fígado , Animais , Humanos , Regeneração Hepática/fisiologia , Conhecimento , Engenharia Tecidual , Hiperplasia
5.
Front Oncol ; 11: 670292, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737944

RESUMO

Hepatocellular carcinoma is one of the cancers with the highest mortality rate worldwide. HCC is often diagnosed when the disease is already in an advanced stage, making the discovery and implementation of biomarkers for the disease a critical aim in cancer research. In this study, we aim to quantify the transcript levels of key signaling molecules relevant to different pathways known to participate in tumorigenesis, with special emphasis on those related to cancer hallmarks and epithelial-mesenchymal transition, using as a model the murine transplantable hepatocarcinoma AS-30D. Using qPCR to quantify the mRNA levels of genes involved in tumorigenesis, we found elevated levels for Tgfb1 and Spp1, two master regulators of EMT. A mesenchymal signature profile for AS-30D cells is also supported by the overexpression of genes encoding for molecules known to be associated to aggressiveness and metastatic phenotypes such as Foxm1, C-met, and Inppl1. This study supports the use of the AS-30D cells as an efficient and cost-effective model to study gene expression changes in HCC, especially those associated with the EMT process.

6.
Sci Rep ; 11(1): 14752, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285283

RESUMO

The present investigation using Positron Emission Tomography shows how peptide VSAK can reduce the detrimental effects produced by lipopolysaccharides in Dutch dwarf rabbits, used to develop the Systemic Inflammatory Response Syndrome (SIRS). Animals concomitantly treated with lipopolysaccharides (LPS) and peptide VSAK show important protection in the loss of radiolabeled-glucose uptake observed in diverse organs when animals are exclusively treated with LPS. Treatment with peptide VSAK prevented the onset of changes in serum levels of glucose and insulin associated with the establishment of SIRS and the insulin resistance-like syndrome. Treatment with peptide VSAK also allowed an important attenuation in the circulating levels of pro-inflammatory molecules in LPS-treated animals. As a whole, our data suggest that peptide VSAK might be considered as a candidate in the development of new therapeutic possibilities focused on mitigating the harmful effects produced by lipopolysaccharides during the course of SIRS.


Assuntos
Glucose/metabolismo , Lipopolissacarídeos/administração & dosagem , Peptídeos/administração & dosagem , Tomografia por Emissão de Pósitrons , Síndrome de Resposta Inflamatória Sistêmica/patologia , Sequência de Aminoácidos , Animais , Modelos Animais de Doenças , Fluordesoxiglucose F18/química , Glucose/análise , Insulina/sangue , Interleucina-1beta/sangue , Rim/diagnóstico por imagem , Rim/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipopolissacarídeos/metabolismo , Fígado/diagnóstico por imagem , Fígado/metabolismo , Masculino , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/metabolismo , Coelhos , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Fator de Necrose Tumoral alfa/sangue
7.
Biomolecules ; 10(9)2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32824918

RESUMO

Human islet amyloid polypeptide (hIAPP) corresponds to a 37-residue hormone present in insulin granules that maintains a high propensity to form ß-sheet structures during co-secretion with insulin. Previously, employing a biomimetic approach, we proposed a panel of optimized IAPP sequences with only one residue substitution that shows the capability to reduce amyloidogenesis. Taking into account that specific membrane lipids have been considered as a key factor in the induction of cytotoxicity, in this study, following the same design strategy, we characterize the effect of a series of lipids upon several polypeptide domains that show the highest aggregation propensity. The characterization of the C-native segment of hIAPP (residues F23-Y37), together with novel variants F23R and I26A allowed us to demonstrate an effect upon the formation of ß-sheet structures. Our results suggest that zwitterionic phospholipids promote adsorption of the C-native segments at the lipid-interface and ß-sheet formation with the exception of the F23R variant. Moreover, the presence of cholesterol did not modify this behavior, and the ß-sheet structural transitions were not registered when the N-terminal domain of hIAPP (K1-S20) was characterized. Considering that insulin granules are enriched in phosphatidylserine (PS), the property of lipid vesicles containing negatively charged lipids was also evaluated. We found that these types of lipids promote ß-sheet conformational transitions in both the C-native segment and the new variants. Furthermore, these PS/peptides arrangements are internalized in Langerhans islet ß-cells, localized in the endoplasmic reticulum, and trigger critical pathways such as unfolded protein response (UPR), affecting insulin secretion. Since this phenomenon was associated with the presence of cytotoxicity on Langerhans islet ß-cells, it can be concluded that the anionic lipid environment and degree of solvation are critical conditions for the stability of segments with the propensity to form ß-sheet structures, a situation that will eventually affect the structural characteristics and stability of IAPP within insulin granules, thus modifying the insulin secretion.


Assuntos
Homeostase , Células Secretoras de Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Lipídeos/química , Humanos , Células Secretoras de Insulina/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Conformação Proteica em Folha beta
8.
Gac Med Mex ; 155(5): 546-553, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695224

RESUMO

Cancer is a multifactorial disease that constitutes a serious public health problem worldwide. Prostate cancer advanced stages are associated with the development of androgen-independent tumors and an apoptosis-resistant phenotype that progresses to metastasis. By studying androgen-independent lymphoid nodule carcinoma of the prostate (LNCaP) cells induced to apoptosis by serum elimination, we identified the activation of a non-selective cationic channel of 23pS conductance that promotes incoming Ca2+ currents, as well as apoptosis final stages. arp2cDNA was isolated and identified to be of the same cell type, and mRNA was expressed in Xenopus laevis oocytes, which was found to be associated with the activation of incoming Ca2+ currents and induction to apoptosis. cDNA, which encodes the ARP2 protein, was overexpressed in LNCaP cells and Chinese hamster ovary cells, which induced apoptosis. Our evidence suggests that protein ARP2 overexpression and transit to the cell membrane allows an increased Ca2+ incoming current that initiates the apoptosis process in epithelial-type cells whose phenotype shows resistance to programmed cell death.


El cáncer es una enfermedad multifactorial que constituye un problema de salud pública mundial. Las etapas avanzadas del cáncer de próstata están asociadas con el desarrollo de tumores independientes de andrógeno y un fenotipo resistente a la apoptosis que progresa a metástasis. Al estudiar células de cáncer de próstata de nódulo linfoide (LNCaP) independientes de andrógeno inducidas a la apoptosis por eliminación de suero, identificamos la activación de un canal catiónico no selectivo de 23pS de conductancia que promueve corrientes entrantes de Ca2+ así como las etapas finales de la apoptosis. El cDNAarp2 fue aislado e identificado del mismo tipo celular y el ARN mensajero fue expresado en ovocitos de Xenopus laevis, asociándolo con la activación de las corrientes entrantes de Ca2+ y la inducción a la apoptosis. El ADN complementario que codifica para la proteína reguladora de apoptosis 2 (ARP2) fue sobreexpresado en células LNCaP y células de ovario de hámster chino, induciendo apoptosis. Nuestra evidencia sugiere que la sobreexpresión y tránsito de la proteína ARP2 a la membrana celular permite una corriente de entrada de Ca2+ aumentada, iniciadora del proceso de apoptosis en células de tipo epitelial cuyo fenotipo muestra resistencia a la muerte celular programada.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Canais de Cálcio/metabolismo , Neoplasias da Próstata/patologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/farmacologia , Células CHO , Cricetulus , DNA Complementar/isolamento & purificação , Feminino , Humanos , Masculino , Oócitos/efeitos dos fármacos , Xenopus laevis
9.
Gac. méd. Méx ; 155(5): 504-510, Sep.-Oct. 2019. graf
Artigo em Inglês | LILACS | ID: biblio-1286551

RESUMO

Cancer is a multifactorial disease that constitutes a serious public health problem worldwide. Prostate cancer advanced stages are associated with the development of androgen-independent tumors and an apoptosis-resistant phenotype that progresses to metastasis. By studying androgen-independent lymphoid nodule carcinoma of the prostate (LNCaP) cells induced to apoptosis by serum elimination, we identified the activation of a non-selective cationic channel of 23pS conductance that promotes incoming Ca2+ currents, as well as apoptosis final stages. arp2cDNA was isolated and identified to be of the same cell type, and mRNA was expressed in Xenopus laevis oocytes, which was found to be associated with the activation of incoming Ca2+ currents and induction to apoptosis. cDNA, which encodes the ARP2 protein, was overexpressed in LNCaP cells and Chinese hamster ovary cells, which induced apoptosis. Our evidence suggests that protein ARP2 overexpression and transit to the cell membrane allows an increased Ca2+ incoming current that initiates the apoptosis process in epithelial-type cells whose phenotype shows resistance to programmed cell death.


Assuntos
Humanos , Animais , Masculino , Neoplasias da Próstata/patologia , Cálcio/metabolismo , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Óvulo/metabolismo , Neoplasias da Próstata/metabolismo , Xenopus laevis , RNA Mensageiro/metabolismo , Canais de Cálcio/metabolismo , Cricetulus , Células CHO , DNA Complementar/isolamento & purificação , Proteínas Reguladoras de Apoptose/isolamento & purificação
10.
Cells ; 8(8)2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31412623

RESUMO

Metabolic overload by saturated fatty acids (SFA), which comprises ß-cell function, and impaired glucose-stimulated insulin secretion are frequently observed in patients suffering from obesity and type 2 diabetes mellitus. The increase of intracellular Ca2+ triggers insulin granule release, therefore several mechanisms regulate Ca2+ efflux within the ß-cells, among others, the plasma membrane Ca2+-ATPase (PMCA). In this work, we describe that lipotoxicity mediated mainly by the saturated palmitic acid (PA) (16C) is associated with loss of protein homeostasis (proteostasis) and potentially cell viability, a phenomenon that was induced to a lesser extent by stearic (18C), myristic (14C) and lauric (12C) acids. PA was localized on endoplasmic reticulum, activating arms of the unfolded protein response (UPR), as also promoted by lipopolysaccharides (LPS)-endotoxins. In particular, our findings demonstrate an alteration in PMCA1/4 expression caused by PA and LPS which trigger the UPR, affecting not only insulin release and contributing to ß-cell mass reduction, but also increasing reactive nitrogen species. Nonetheless, stearic acid (SA) did not show these effects. Remarkably, the proteolytic degradation of PMCA1/4 prompted by PA and LPS was avoided by the action of monounsaturated fatty acids such as oleic and palmitoleic acid. Oleic acid recovered cell viability after treatment with PA/LPS and, more interestingly, relieved endoplasmic reticulum (ER) stress. While palmitoleic acid improved the insulin release, this fatty acid seems to have more relevant effects upon the expression of regulatory pumps of intracellular Ca2+. Therefore, chain length and unsaturation of fatty acids are determinant cues in proteostasis of ß-cells and, consequently, on the regulation of calcium and insulin secretion.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Ácido Oleico/farmacologia , Ácido Palmítico/toxicidade , Proteostase/efeitos dos fármacos , Animais , Cálcio/metabolismo , Linhagem Celular , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Lipopolissacarídeos/toxicidade , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Ratos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
11.
Gac Med Mex ; 155(5): 504-510, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32091029

RESUMO

Cancer is a multifactorial disease that constitutes a serious public health problem worldwide. Prostate cancer advanced stages are associated with the development of androgen-independent tumors and an apoptosis-resistant phenotype that progresses to metastasis. By studying androgen-independent lymphoid nodule carcinoma of the prostate (LNCaP) cells induced to apoptosis by serum elimination, we identified the activation of a non-selective cationic channel of 23pS conductance that promotes incoming Ca2+ currents, as well as apoptosis final stages. arp2cDNA was isolated and identified to be of the same cell type, and mRNA was expressed in Xenopus laevis oocytes, which was found to be associated with the activation of incoming Ca2+ currents and induction to apoptosis. cDNA, which encodes the ARP2 protein, was overexpressed in LNCaP cells and Chinese hamster ovary cells, which induced apoptosis. Our evidence suggests that protein ARP2 overexpression and transit to the cell membrane allows an increased Ca2+ incoming current that initiates the apoptosis process in epithelial-type cells whose phenotype shows resistance to programmed cell death.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Cálcio/metabolismo , Neoplasias da Próstata/patologia , Animais , Proteínas Reguladoras de Apoptose/isolamento & purificação , Células CHO , Canais de Cálcio/metabolismo , Cricetulus , DNA Complementar/isolamento & purificação , Humanos , Masculino , Óvulo/metabolismo , Neoplasias da Próstata/metabolismo , RNA Mensageiro/metabolismo , Xenopus laevis
12.
Biochem Biophys Res Commun ; 505(2): 365-371, 2018 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-30253944

RESUMO

Amphiphysin 2 and members of the BAR-domain family of proteins participate in a wide array of cellular processes including cell cycle and endocytosis. Given that amphiphysin 2 is related to diverse cell responses as a result of metabolic stress, we investigated in macrophages whether oxidative stress originated by the internalization of oxidized low density lipoproteins (oxLDL) affect both, the expression of amphiphysin 2 and its binding partner c-Myc. Here we report that under oxidative stress, a complex formation between amphiphysin 2(Bin1) and c-Myc allows the cell to develop a novel survival equilibrium state established between cell proliferation and cell death. We propose that under conditions of oxidative stress given by the internalization of oxLDL, macrophages employ the formation of the amphiphysin 2(Bin1)/c-Myc complex as a control mechanism to initially avoid the process of cell death in an attempt to prolong cell survival.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sobrevivência Celular , Endocitose , Lipoproteínas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Sobrevivência Celular/fisiologia , Células Cultivadas , Humanos , Lipoproteínas/síntese química , Lipoproteínas LDL/metabolismo , Substâncias Macromoleculares/química , Macrófagos/citologia , Macrófagos/metabolismo , Estresse Oxidativo
13.
Artigo em Inglês | MEDLINE | ID: mdl-29988450

RESUMO

The islet amyloid polypeptide (IAPP) or amylin maintains a key role in metabolism. This 37-residues-peptide could form pancreatic amyloids, which are a characteristic feature of diabetes mellitus type 2. However, some species do not form amyloid fibril structures. By employing a biomimetic approach, we generated an extensive panel of optimized sequences of IAPP, which could drastically reduce aggregation propensity. A structural and cellular characterization analysis was performed on the C-terminal domain with the highest aggregation propensity. This allowed the observation of an aggregative phenomenon dependent of the lipid environment. Evaluation of the new F23R variant demonstrated inhibition of ß-sheet structure and, therefore, amyloid formation on the native C-terminal, phenomenon that was associated with functional optimization in calcium and cholesterol management coupled with the optimization of insulin secretion by beta cells. When F23R variant was evaluated in microglia cells, a model of amyloidosis, cytotoxic conditions were not registered. In addition, it was found that C-terminal sequences of IAPP could modulate cholesterol metabolism in hepatocytes through regulation of SREBP-2, apoA-1, ABCA1, and LDLR, mechanism that may represent a new function of IAPP on the metabolism of cholesterol, increasing the LDL endocytosis in hepatocytes. Optimized sequences with only one residue modification in the C-terminal core aggregation could diminish ß-sheet formation and represent a novel strategy adaptable to other pharmacological targets. Our data suggest a new IAPP function associated with rearrangements on metabolism of cholesterol in hepatocytes.

14.
Sci Rep ; 7(1): 13442, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29044181

RESUMO

Our study tested the proposal that c-Myc activation in macrophages is differentially carried out dependent on the intracellular oxidative state of cells and potentially associated to the process of atherogenesis. Under our experimental conditions, the generation of reactive oxygen species carried out by the presence of oxidized low density lipoproteins (oxLDL) or Gram negative bacterial lipopolysaccharides (LPS) modifies the expression of cellular adhesion molecules such as c-Abl, calcium transport proteins such as the plasma membrane Ca2+-ATPase (PMCA), CD47, procaspase-7, CASP7, CHOP, transcriptional activators such as c-Jun and c-Myc and molecules that participate in the process of endocytosis like α- and ß-adaptin. We present the first evidence showing that a state of oxidative stress alters c-Myc-dependent activity pathways in macrophages through binding to molecules such as ß-adaptin promoting the reversible formation of a complex that presents the ability to regulate the development of the cell cycle. We propose that the subtle regulation carried out through the formation of this c-Myc/ß-adaptin complex when cells change from a normal physiological condition to a state of oxidative stress, represents a defense mechanism against the deleterious effects caused by the loss of cell homeostasis.


Assuntos
Subunidades beta do Complexo de Proteínas Adaptadoras/metabolismo , Ciclo Celular , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Endocitose , Células HEK293 , Células Hep G2 , Humanos , Camundongos , Ligação Proteica , Células RAW 264.7 , Ratos
15.
Arch Med Res ; 48(1): 12-26, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28577865

RESUMO

Atherosclerosis and cancer are chronic diseases considered two of the main causes of death all over the world. Taking into account that both diseases are multifactorial, they share not only several important molecular pathways but also many ethiological and mechanistical processes from the very early stages of development up to the advanced forms in both pathologies. Factors involved in their progression comprise genetic alterations, inflammatory processes, uncontrolled cell proliferation and oxidative stress, as the most important ones. The fact that external effectors such as an infective process or a chemical insult have been proposed to initiate the transformation of cells in the artery wall and the process of atherogenesis, emphasizes many similarities with the progression of the neoplastic process in cancer. Deregulation of cell proliferation and therefore cell cycle progression, changes in the synthesis of important transcription factors as well as adhesion molecules, an alteration in the control of angiogenesis and the molecular similarities that follow chronic inflammation, are just a few of the processes that become part of the phenomena that closely correlates atherosclerosis and cancer. The aim of the present study is therefore, to provide new evidence as well as to discuss new approaches that might promote the identification of closer molecular ties between these two pathologies that would permit the recognition of atherosclerosis as a pathological process with a very close resemblance to the way a neoplastic process develops, that might eventually lead to novel ways of treatment.


Assuntos
Aterosclerose , Neoplasias , Apoptose , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/patologia , Cálcio/metabolismo , Proliferação de Células , Epigênese Genética , Humanos , Inflamação/metabolismo , MicroRNAs/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/patologia , Neovascularização Fisiológica , Estresse Oxidativo
16.
Sci Rep ; 5: 16091, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26537318

RESUMO

Described by our group a few years ago, the cholesteryl-ester transfer protein isoform (CETPI), exclusively expressed in the small intestine and present in human plasma, lacked a functional identification for a role of physiological relevance. Now, this study introduces CETPI as a new protein with the potential capability to recognise, bind and neutralise lipopolysaccharides (LPS). Peptides derived from the C-terminal domain of CETPI showed that CETPI not only might interact with several LPS serotypes but also might displace LPS bound to the surface of cells. Peptide VSAK, derived from the last 18 residues of CETPI, protected against the cytotoxic effect of LPS on macrophages. At high concentrations, when different cell types were tested in culture, it did not exhibit cytotoxicity by itself and it did prevent the expression of pro-inflammatory cytokines as well as the generation of oxidative stress conditions. In a rabbit model of septic shock, the infusion of peptide VSAK exerted a protective effect against the effects of LPS and reduced the presence of tumor necrosis factor-alpha (TNFα) in plasma. Therefore, CETPI is proposed as a new protein with the capability to advance the possibilities for better understanding and treatment of the dangerous effects of LPS in vivo.


Assuntos
Proteínas de Fase Aguda/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Glicoproteínas de Membrana/metabolismo , Plasma/metabolismo , Estrutura Terciária de Proteína/fisiologia , Animais , Células CACO-2 , Linhagem Celular , Linhagem Celular Tumoral , Citocinas/metabolismo , Células Hep G2 , Humanos , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Camundongos , Peptídeos/metabolismo , Isoformas de Proteínas/metabolismo , Choque Séptico/metabolismo , Fator de Necrose Tumoral alfa
17.
Mol Cell Biochem ; 393(1-2): 99-109, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24748322

RESUMO

The structure of apolipoprotein A-I (apoA-I), the major protein of HDL, has been extensively studied in past years. Nevertheless, its corresponding three-dimensional structure has been difficult to obtain due to the frequent conformational changes observed depending on the microenvironment. Although the function of each helical segment of this protein remains unclear, it has been observed that the apoA-I amino (N) and carboxy-end (C) domains are directly involved in receptor-recognition, processes that determine the diameter for HDL particles. In addition, it has been observed that the high structural plasticity of these segments might be related to several amyloidogenic processes. In this work, we studied a series of peptides derived from the N- and C-terminal domains representing the most hydrophobic segments of apoA-I. Measurements carried out using circular dichroism in all tested peptides evidenced that the lipid environment promotes the formation of α-helical structures, whereas an aqueous environment facilitates a strong tendency to adopt ß-sheet/disordered conformations. Electron microscopy observations showed the formation of amyloid-like structures similar to those found in other well-defined amyloidogenic proteins. Interestingly, when the apoA-I peptides were incubated under conditions that promote stable globular structures, two of the peptides studied were cytotoxic to microglia and mouse macrophage cells. Our findings provide an insight into the physicochemical properties of key segments contained in apoA-I which may be implicated in disorder-to-order transitions that in turn maintain the delicate equilibrium between both, native and abnormal conformations, and therefore control its propensity to become involved in pathological processes.


Assuntos
Proteínas Amiloidogênicas/química , Apolipoproteína A-I/química , Peptídeos/química , Conformação Proteica , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Lipídeos/química , Camundongos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
18.
PLoS One ; 9(1): e86089, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465888

RESUMO

Neoplastic epithelial cells generate the most aggressive types of cancers such as those located in the lung, breast, colon, prostate and ovary. During advanced stages of prostate cancer, epithelial cells are associated to the appearance of androgen-independent tumors, an apoptotic-resistant phenotype that ultimately overgrows and promotes metastatic events. We have previously identified and electrophysiologically characterized a novel Ca(2+)-permeable channel activated during apoptosis in the androgen-independent prostate epithelial cancer cell line, LNCaP. In addition, we reported for the first time the cloning and characterization of this channel-like molecule named apoptosis regulated protein 2 (ARP2) associated to a lethal influx of Ca(2+) in Xenopus oocytes. In the present study, LNCaP cells and Chinese hamster ovary cells (CHO cell line) transfected with arp2-cDNA are induced to undergo apoptosis showing an important impact on cell viability and activation of caspases 3 and 7 when compared to serum deprived grown cells and ionomycin treated cells. The subcellular localization of ARP2 in CHO cells undergoing apoptosis was studied using confocal microscopy. While apoptosis progresses, ARP2 initially localized in the peri-nuclear region of cells migrates with time towards the plasma membrane region. Based on the present results and those of our previous studies, the fact that ARP2 constitutes a novel cation channel is supported. Therefore, ARP2 becomes a valuable target to modulate the influx and concentration of calcium in the cytoplasm of epithelial cancer cells showing an apoptotic-resistant phenotype during the onset of an apoptotic event.


Assuntos
Angiopoietinas/genética , Apoptose/genética , Ovário/metabolismo , Neoplasias da Próstata/genética , Proteína 2 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Angiopoietinas/metabolismo , Animais , Células CHO , Cálcio/metabolismo , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Transformada , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Cricetinae , Cricetulus , Citosol/metabolismo , Ativação Enzimática , Feminino , Fura-2/metabolismo , Expressão Gênica , Humanos , Masculino , Neoplasias da Próstata/patologia , Transporte Proteico
19.
Organogenesis ; 10(4): 333-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25836032

RESUMO

During the early stages of development, the embryo depends on the placenta as provider of oxygen and calcium, among other essential compounds. Although fetal liver accomplishes a well-known haematopoietic function, its contribution to calcium homeostasis upon development is poorly understood. The homeostasis of cell calcium contributes to diverse signaling pathways across developmental stages of most tissues and the calcium-ATPase located at the plasma membrane (PMCA) helps pumping excess calcium into the extracellular space. To date, the understanding of the equilibrium shift between PMCA isoforms during liver development is still missing. This review focuses on the characterization of the hepatic PMCA along the early stages of development, followed by a description of modern approaches to study calcium homeostasis involving several types of pluripotent cells. The application of interdisciplinary techniques to improve our understanding of liver development and the role calcium homeostasis plays in the definition of pathogenesis is also discussed.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Cálcio/metabolismo , Membrana Celular/enzimologia , Hepatócitos/fisiologia , Fígado/embriologia , Fígado/metabolismo , Homeostase/fisiologia , Fígado/citologia , Modelos Biológicos
20.
Int J Mol Sci ; 12(3): 2019-35, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21673937

RESUMO

The cholesteryl-ester transfer protein (CETP) facilitates the transfer of cholesterol esters and triglycerides between lipoproteins in plasma where the critical site for its function is situated in the C-terminal domain. Our group has previously shown that this domain presents conformational changes in a non-lipid environment when the mutation D(470)N is introduced. Using a series of peptides derived from this C-terminal domain, the present study shows that these changes favor the induction of a secondary ß-structure as characterized by spectroscopic analysis and fluorescence techniques. From this type of secondary structure, the formation of peptide aggregates and fibrillar structures with amyloid characteristics induced cytotoxicity in microglial cells in culture. These supramolecular structures promote cell cytotoxicity through the formation of reactive oxygen species (ROS) and change the balance of a series of proteins that control the process of endocytosis, similar to that observed when ß-amyloid fibrils are employed. Therefore, a fine balance between the highly dynamic secondary structure of the C-terminal domain of CETP, the net charge, and the physicochemical characteristics of the surrounding microenvironment define the type of secondary structure acquired. Changes in this balance might favor misfolding in this region, which would alter the lipid transfer capacity conducted by CETP, favoring its propensity to substitute its physiological function.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/química , Peptídeos/química , Sequência de Aminoácidos , Peptídeos beta-Amiloides/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Camundongos , Fragmentos de Peptídeos/química , Peptídeos/síntese química , Peptídeos/toxicidade , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA