Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Cancer Res ; 13(7): 2773-2789, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37559981

RESUMO

Cancer is one of the most common and widely diagnosed diseases worldwide. With an increase in prevalence and incidence, many studies in cancer biology have been looking at the role pro-cancer proteins play. One of these proteins is the Really Interesting New Gene (RING), which has been studied extensively due to its structure and functions such as apoptosis, neddylation, and its role in ubiquitination. The RING domain is a cysteine-rich domain known to bind Cysteine and Histidine residues. It also binds two zinc ions that help stabilize the protein in various patterns, often with a 'cross-brace' topology. Different RING finger proteins have been studied and found to have suitable targets for developing anti-cancer therapeutics. These identified candidate proteins include Parkin, COP1, MDM2, BARD1, BRCA-1, PIRH2, c-CBL, SIAH1, RBX1 and RNF8. Inhibiting these candidate proteins provides opportunities for shutting down pathways associated with tumour development and metastasis.

2.
Am J Transl Res ; 14(9): 6150-6162, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247303

RESUMO

BACKGROUND: Targeting protein-protein interactions (PPIs) linked to protein quality control (PQC) pathways as potential anti-cancer drug targets have unanimously widened biological insights and the therapeutic potential of PPIs as smart-drug discovery tools in cancer. PPIs between disease-relevant proteins associated with protein homeostasis in PQC pathways have been linked to improved mechanistic understanding associated with conformational abnormalities and impairment, cellular proteotoxicity, induced apoptosis, and pathogenesis in different types of cancers. In this context, PPIs between small nuclear ribonucleoprotein polypeptide G (SNRPG) and heat shock protein 70.14 (Hsp70.14) have attracted attention as potential smart drug discovery tools in cancer diagnostics and therapeutics. Validated evidence of high-quality biological data has shown the presence of the two proteins in different types of cancers including breast cancer. The links between SNRPG and Hsp70.14 in cancer-cell networks remain elusive, overlooked, and uncharacterized. METHODOLOGY: In this study, we explored the interaction between the two oncogenic proteins using the MST-based assays. RESULTS: The results revealed a low KD in the nanomolar concentration range of 2.4673 × 10-7 demonstrating a great affinity for SNRPG binding to Hsp70.14. CONCLUSIONS: The results suggest a possible involvement between the two proteins in hostile tumour microenvironments. Furthermore, these findings offer a different therapeutic perspective that could pave the way for the creation of novel small molecule inhibitors as drugs for the treatment of cancer.

3.
Adv Pharm Bull ; 12(2): 283-297, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35620337

RESUMO

Human schistosomiasis is a disease that mostly plagues the destitute of various tropical and sub-tropical countries, particularly in sub-Saharan Africa (SSA) and South America. It has significant effects on various health and economic-related matters. Globally, the burden of schistosomiasis has been controlled with a single chemotherapeutic drug, praziquantel (PZQ), which has recently demonstrated several clinical issues, including its inability to destroy juvenile schistosome worms and drug resistance because of its extensive use. The use of organometallic moieties in biological and medicinal chemistry has developed greatly and has led to their use in various anti-cancer and anti-infectious agents. The abundance of a range of organometallic compounds that can cause damage to the parasite has received tremendous feedback, with many already at clinical trials. The distinct redox biology of the schistosome parasite is a vulnerable element to the survival of the worm and has steered attempts toward the use of redox-directed bioorganometallic compounds. Disruption of the schistosome redox homeostasis through organometallic ions provides a novel drug target that could be used in overcoming the drawbacks of the mainstream drug and one that could possibly bypass the emergence of drug resistance.

4.
Am J Transl Res ; 13(11): 12775-12785, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956492

RESUMO

Regulatory core-splicing proteins are now becoming highly promising therapeutic targets for the development of anti-cancer drugs. SNRPG and RBBP6 are two good examples of regulatory core-splicing proteins involved in tumorigenesis and tumor development whose multi-functional role is primarily mediated by protein-protein interactions. Over the years, skepticism abutting from the two onco-proteins has been mounting. Suggestive evidence using yeast 2-hybrid technique observed possible involvement between SNRPG and the RING finger domain of RBBP6. However, the putative interaction remains elusive and yet to be characterized. In this study, we developed the first MST-based assay to confirm the interaction between SNRPG and the RING finger domain of RBBP6. The results demonstrated a strong binding affinity between SNRPG and the RING finger domain of RBBP6 with a KD in the low nanomolar concentration range of 3.1596 nM. The results are congruent with previous findings suggesting possible involvement between the two proteins in cancer-cell networks, thereby providing a new mechanistic insight into the interaction between SNRPG and the RING finger domain of RBBP6. The interaction is therapeutically relevant and represents a great milestone in the anti-cancer drug discovery space. Identification of small molecule inhibitors to modulate the binding affinity between the two proteins would therefore be a major breakthrough in the development of new PPI-focused anti-cancer drugs.

5.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34639223

RESUMO

Universal stress proteins (USPs) were originally discovered in Escherichia coli over two decades ago and since then their presence has been detected in various organisms that include plants, archaea, metazoans, and bacteria. As their name suggests, they function in a series of various cellular responses in both abiotic and biotic stressful conditions such as oxidative stress, exposure to DNA damaging agents, nutrient starvation, high temperature and acidic stress, among others. Although a highly conserved group of proteins, the molecular and biochemical aspects of their functions are largely evasive. This is concerning, as it was observed that USPs act as essential contributors to the survival/persistence of various infectious pathogens. Their ubiquitous nature in various organisms, as well as their augmentation during conditions of stress, is a clear indication of their direct or indirect importance in providing resilience against such conditions. This paper seeks to clarify what has already been reported in the literature on the proposed mechanism of action of USPs in pathogenic organisms.


Assuntos
Bactérias/patogenicidade , Infecções Bacterianas/complicações , Fibrose Cística/patologia , Proteínas de Choque Térmico/metabolismo , Parasitos/patogenicidade , Esquistossomose/complicações , Animais , Fibrose Cística/etiologia , Fibrose Cística/metabolismo , Humanos , Schistosoma/patogenicidade
6.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34281269

RESUMO

The host-parasite schistosome relationship relies heavily on the interplay between the strategies imposed by the schistosome worm and the defense mechanisms the host uses to counter the line of attack of the parasite. The ultimate goal of the schistosome parasite entails five important steps: evade elimination tactics, survive within the human host, develop into adult forms, propagate in large numbers, and transmit from one host to the next. The aim of the parasitized host on the other hand is either to cure or limit infection. Therefore, it is a battle between two conflicting aspirations. From the host's standpoint, infection accompanies a plethora of immunological consequences; some are set in place to defend the host, while most end up promoting chronic disease, which ultimately crosses paths with oxidative stress and cancer. Understanding these networks provides attractive opportunities for anti-schistosome therapeutic development. Hence, this review discusses the mechanisms by which schistosomes modulate the human immune response with ultimate links to oxidative stress and genetic instability.


Assuntos
Citocinas/metabolismo , Interações Hospedeiro-Parasita/imunologia , Esquistossomose/imunologia , Esquistossomose/metabolismo , Animais , Linfócitos B Reguladores/imunologia , Basófilos/imunologia , Células Dendríticas/imunologia , Eosinófilos/imunologia , Humanos , Macrófagos/imunologia , Mastócitos/imunologia , MicroRNAs/imunologia , Modelos Imunológicos , Estresse Oxidativo , Schistosoma/imunologia , Schistosoma/patogenicidade , Esquistossomose/parasitologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia
7.
Curr Drug Discov Technol ; 18(5): e01102020186453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33001015

RESUMO

BACKGROUND: For decades, Praziquantel has been the undisputed drug of choice for all schistosome infections, but rising concerns due to the unelucidated mechanism of action of the drug and unavoidable reports of emerging drug resistant strains has necessitated the need for alternative treatment drug. Moreover, current apprehension has been reinforced by total dependence on the drug for treatment hence, the search for novel and effective anti-schistosomal drugs. METHODS: This study made use of bioinformatic tools to determine the structural binding of the Universal G4LZI3 Stress Protein (USP) in complex with ten polyphenol compounds, thereby highlighting the effectiveness of these recently identified 'lead' molecules in the design of novel therapeutics targeted against schistosomiasis. Upregulation of the G4LZI3 USP throughout the schistosome multifaceted developmental cycle sparks interest in its potential role as a druggable target. The integration of in silico tools provides an atomistic perspective into the binding of potential inhibitors to target proteins. This study therefore, implemented the use of Molecular Dynamic (MD) simulations to provide functional and structural insight into key conformational changes upon binding of G4- ZLI3 to these key phenolic compounds. RESULTS: Post-MD analyses revealed unique structural and conformational changes in the G4LZI3 protein in complex with curcumin and catechin respectively. These systems exhibited the highest binding energies, while the major interacting residues conserved in all the complexes provides a route map for structure-based drug design of novel compounds with enhanced inhibitory potency against the G4LZI3 protein. CONCLUSION: This study suggests an alternative approach for the development of anti-schistosomal drugs using natural compounds.


Assuntos
Proteínas de Choque Térmico , Esquistossomose , Desenho de Fármacos , Humanos , Simulação de Dinâmica Molecular
8.
Curr Drug Discov Technol ; 18(4): 473-484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32767945

RESUMO

Schistosome infection is regarded as one of the most important and neglected tropical diseases associated with poor sanitation. Like other living organisms, schistosomes employ multiple biological processes, of which some are regulated by a post-translational modification called Adenosine Diphosphate-ribosylation (ADP-ribosylation), catalyzed by ADP-ribosyltransferases. ADP-ribosylation is the addition of ADP-ribose moieties from Nicotinamide Adenine Dinucleotide (NAD+) to various targets, which include proteins and nucleotides. It is crucial in biological processes such as DNA repair, apoptosis, carbohydrate metabolism and catabolism. In the absence of a vaccine against schistosomiasis, this becomes a promising pathway in the identification of drug targets against various forms of this infection. The tegument of the worm is an encouraging immunogenic target for anti-schistosomal vaccine development. Vaccinology, molecular modeling and target-based drug discovery strategies have been used for years in drug discovery and for vaccine development. In this paper, we outline ADP-ribosylation and other different approaches to drug discovery and vaccine development against schistosomiasis.


Assuntos
ADP-Ribosilação/imunologia , Anti-Helmínticos/farmacologia , Doenças Negligenciadas/terapia , Schistosoma/imunologia , Esquistossomose/terapia , ADP-Ribosilação/efeitos dos fármacos , Animais , Anti-Helmínticos/uso terapêutico , Antígenos de Helmintos/imunologia , Descoberta de Drogas/métodos , Humanos , Doenças Negligenciadas/imunologia , Doenças Negligenciadas/parasitologia , Schistosoma/efeitos dos fármacos , Esquistossomose/imunologia , Esquistossomose/parasitologia , Desenvolvimento de Vacinas/métodos
9.
Adv Pharm Bull ; 9(4): 510-520, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31857956

RESUMO

Chlorotoxin (CTX) is a minute 4 kDa protein made up of 36 amino acid residues, commonly known for its binding affinity to chloride channels and matrix metalloproteinase-2 (MMP-2) of glioma tumors of the spine and brain. This property and the possibility of conjugating this peptide to nanoparticles have enabled its diverse use in various biotechnological and biomedical applications for cancer treatment, such as in tumor imaging and radiotherapy. Because of the fascinating biological properties CTX possesses, elucidating its mechanism of action may hold promise for the development of new and effective therapeutic drugs, as well as more sensitive and highly specific cancer-screening kits. This article therefore reviews the currently known applications of CTX and suggests diverse ways in which it can be applied for the design of improved drugs and diagnostic tools for cancer.

10.
Am J Cancer Res ; 9(2): 242-249, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30906626

RESUMO

The historical relationship between cancer and inflammation has long been evaluated, and dates back to the early work of Virchow (1863), where he hypothesised that chronic inflammation as a direct cause of tissue injury and infection, could actually promote tissue proliferation. At that period in time however, the exact mechanisms that mediated this relationship were little understood. Subsequent studies have since then demonstrated that chronic inflammation plays significant roles in microenvironments, mostly in the progression of tumours, probably, through over-secretion of proinflammatory cytokines and other immune-killing apparatus such as reactive oxygen species (ROS) which cause damage to normal cells leading to DNA damage and increased cellular mutation rates. Recently, the identification of DNA lesion 5-chlorocytosine (5-CIC) created by hypochlorous acid (HOCl) secreted to nullify or kill infectious agents and toll-like receptor 4 (TLR4)-mediated chronic inflammation in the human gut, has become the latest evidence linking inflammation directly to cancer. The key to cellular survival and adaptation under unfavourable or pathological conditions is the expression of heat shock proteins (HSPs) also called molecular chaperones. These proteins play essential roles in DNA repair processes by maintaining membrane integrity, orderliness and stability of client proteins that play prominent roles in DNA repair mechanisms. More so, HSPs have also been shown to modulate the effects of pro-inflammatory/apoptotic cytokines through the inhibition of cascades leading to the generation of ROS-mediated DNA damage, while promoting the DNA repair mechanism, thus playing prominent roles in various stages of DNA repair and cancer progression. Hence, studies targeting HSPs and their inhibitors in inflammation, DNA damage, and repair, could improve current cancer therapeutic efficiency. Here the focus will be on the relationship between HSPs, inflammation and cancer, as well as roles of HSPs in DNA damage response (DDR).

11.
Infect Disord Drug Targets ; 19(4): 337-349, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30599112

RESUMO

Today schistosomiasis, caused mainly by the three major schistosome species (S. mansoni, S. haematobium and S. japonicum), has for many decades and still continues to be on a rapid and swift rise globally, claiming thousands of lives every year and leaving 800 million people at the risk of infection. Due to the high prevalence of this disease and the steady increase in the infection rates, praziquantel (PZQ) remains the only effective drug against this acute disease although it has no effect on the juvenile schistosome parasite. However, no significant approaches have been made in recent years in the discovery of new or alternative drugs and unfortunately, resistance to this drug has been reported in some parts of the world. Therefore, it is imperative to develop a new drug for this debilitating disease. In this review, a brief history of past, present, and new promising anti-schistosomal drugs is presented.


Assuntos
Anti-Helmínticos/uso terapêutico , Praziquantel/uso terapêutico , Schistosoma/efeitos dos fármacos , Esquistossomose/tratamento farmacológico , Animais , Anti-Helmínticos/história , Saúde Global , História do Século XX , História do Século XXI , Humanos , Praziquantel/história
12.
Pharmaceuticals (Basel) ; 11(4)2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30274155

RESUMO

Cancer and infectious diseases such as Ebola, HIV, tuberculosis, Zika, hepatitis, measles and human schistosomiasis are serious global health hazards. The increasing annual morbidities and mortalities of these diseases have been blamed on drug resistance and the inefficacy of available diagnostic tools, particularly those which are immunologically-based. Antibody-based tools rely solely on antibody production for diagnosis and for this reason they are the major cause of diagnostic delays. Unfortunately, the control of these diseases depends on early detection and administration of effective treatment therefore any diagnostic delay is a huge challenge to curbing these diseases. Hence, there is a need for alternative diagnostic tools, discovery and development of novel therapeutic agents. Studies have demonstrated that aptamers could potentially offer one of the best solutions to these problems. Aptamers are short sequences of either DNA or RNA molecules, which are identified in vitro through a SELEX process. They are sensitive and bind specifically to target molecules. Their promising features suggest they may serve as better diagnostic agents and can be used as drug carriers for therapeutic purposes. In this article, we review the applications of aptamers in the theranostics of cancer and some infectious diseases.

13.
Vaccines (Basel) ; 6(1)2017 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-29295563

RESUMO

Major histocompatibility complex class 1 chain-related gene sequence A is a polymorphic gene found at about 46.6 kb centromeric to HLA-B. It encodes a transmembrane protein, which is a non-classical human leukocyte antigen whose expression is normally induced by stress conditions like cancer and viral infections. The expression of MIC-A leads to the activation of NKG2D receptors of natural killer and T cells, leading to the generation of innate immune response that can easily eliminate/cleanse tumour cells and other cells that express the protein. Several bioinformatics and immunoinformatics tools were used to analyse the sequence and structure of the MIC-A protein. These tools were used in building and evaluating modelled structure of MIC-A, and to predict several antigenic determinant sites on the protein. The MIC-A protein structure generated an average antigenic propensity of 1.0289. Additionally, the hydrophilic regions on the surface of the MIC-A protein where antibodies can be attached were revealed. A total of fourteen antigenic epitopes were predicted, with six found in the transmembrane protein topology, and are predicted to play a role in the development of vaccines that can reactivate the functionalities of the MIC-A protein on the surface of cancer cells in order to elicit a desired immune response.

14.
Pharmaceuticals (Basel) ; 11(1)2017 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-29295496

RESUMO

Heat shock proteins (HSPs) play cytoprotective activities under pathological conditions through the initiation of protein folding, repair, refolding of misfolded peptides, and possible degradation of irreparable proteins. Excessive apoptosis, resulting from increased reactive oxygen species (ROS) cellular levels and subsequent amplified inflammatory reactions, is well known in the pathogenesis and progression of several human inflammatory diseases (HIDs) and cancer. Under normal physiological conditions, ROS levels and inflammatory reactions are kept in check for the cellular benefits of fighting off infectious agents through antioxidant mechanisms; however, this balance can be disrupted under pathological conditions, thus leading to oxidative stress and massive cellular destruction. Therefore, it becomes apparent that the interplay between oxidant-apoptosis-inflammation is critical in the dysfunction of the antioxidant system and, most importantly, in the progression of HIDs. Hence, there is a need to maintain careful balance between the oxidant-antioxidant inflammatory status in the human body. HSPs are known to modulate the effects of inflammation cascades leading to the endogenous generation of ROS and intrinsic apoptosis through inhibition of pro-inflammatory factors, thereby playing crucial roles in the pathogenesis of HIDs and cancer. We propose that careful induction of HSPs in HIDs and cancer, especially prior to inflammation, will provide good therapeutics in the management and treatment of HIDs and cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA