RESUMO
Induction of autophagy represents an effective survival strategy for nutrient-deprived or stressed cancer cells. Autophagy contributes to the modulation of communication within the tumor microenvironment. Here, we conducted a study of the metabolic and signaling implications associated with autophagy induced by glutamine (Gln) and serum starvation and PI3K/mTOR inhibitor and autophagy inducer NVP-BEZ235 (BEZ) in the head and neck squamous cell carcinoma (HNSCC) cell line FaDu. We compared the effect of these different types of autophagy induction on ATP production, lipid peroxidation, mitophagy, RNA cargo of extracellular vesicles (EVs), and EVs-associated cytokine secretome of cancer cells. Both BEZ and starvation resulted in a decline in ATP production. Simultaneously, Gln starvation enhanced oxidative damage of cancer cells by lipid peroxidation. In starved cells, there was a discernible fragmentation of the mitochondrial network coupled with an increase in the presence of tumor susceptibility gene 101 (TSG101) on the mitochondrial membrane, indicative of the sorting of mitochondrial cargo into EVs. Consequently, the abundance of mitochondrial RNAs (mtRNAs) in EVs released by FaDu cells was enhanced. Notably, mtRNAs were also detectable in EVs isolated from the serum of both HNSCC patients and healthy controls. Starvation and BEZ reduced the production of EVs by cancer cells, yet the characteristic molecular profile of these EVs remained unchanged. We also found that alterations in the release of inflammatory cytokines constitute a principal response to autophagy induction. Importantly, the specific mechanism driving autophagy induction significantly influenced the composition of the EVs-associated cytokine secretome.
Assuntos
Trifosfato de Adenosina , Autofagia , Vesículas Extracelulares , Glutamina , Estresse Oxidativo , RNA Mitocondrial , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efeitos dos fármacos , Linhagem Celular Tumoral , Trifosfato de Adenosina/metabolismo , Glutamina/metabolismo , RNA Mitocondrial/metabolismo , RNA Mitocondrial/genética , Autofagia/efeitos dos fármacos , Mitocôndrias/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/genéticaRESUMO
Immunotherapy represents a revolutionary advancement in cancer treatment, which has traditionally focused on T cells; however, the role of B cells in cancer immunotherapy has gained interest because of their role in antigen presentation, antibody production, and cytokine release. In this study, we examined the role of B cells in previously developed intratumoral MBTA therapy (mannan-BAM, TLR ligands, and anti-CD40 antibody) in murine models of MTT pheochromocytoma. The results indicated that B cells significantly enhance the success of MBTA therapy, with wild-type mice exhibiting a lower tumor incidence and smaller tumors compared with B cell-deficient mice. Increased IL-6 and TNF-alpha levels indicated severe inflammation and a potential cytokine storm in B cell-deficient mice. Neutralization of TNF-alpha ameliorated these complications but resulted in increased tumor recurrence. The results highlight the important role of B cells in enhancing the immune response and maintaining immune homeostasis during MBTA therapy. Our findings offer new insights into improving therapeutic outcomes.
RESUMO
The failure of intracellular zinc accumulation is a key process in prostate carcinogenesis. Although prostate cancer cells can accumulate zinc after long-term exposure, chronic zinc oversupply may accelerate prostate carcinogenesis or chemoresistance. Because cancer progression is associated with energetically demanding cytoskeletal rearrangements, we investigated the effect of long-term zinc presence on biophysical parameters, ATP production, and EMT characteristics of two prostate cancer cell lines (PC-3, 22Rv1). Prolonged exposure to zinc increased ATP production, spare respiratory capacity, and induced a response in PC-3 cells, characterized by remodeling of vimentin and a shift of cell dry mass density and caveolin-1 to the perinuclear region. This zinc-induced remodeling correlated with a greater tendency to maintain actin architecture despite inhibition of actin polymerization by cytochalasin. Zinc partially restored epithelial characteristics in PC-3 cells by decreasing vimentin expression and increasing E-cadherin. Nevertheless, the expression of E-cadherin remained lower than that observed in predominantly oxidative, low-invasive 22Rv1 cells. Following long-term zinc exposure, we observed an increase in cell stiffness associated with an increased refractive index in the perinuclear region and an increased mitochondrial content. The findings of the computational simulations indicate that the mechanical response cannot be attributed exclusively to alterations in cytoskeletal composition. This observation suggests the potential involvement of an additional, as yet unidentified, mechanical contributor. These findings indicate that long-term zinc exposure alters a group of cellular parameters towards an invasive phenotype, including an increase in mitochondrial number, ATP production, and cytochalasin resistance. Ultimately, these alterations are manifested in the biomechanical properties of the cells.
RESUMO
Mitochondrial autophagy (mitophagy) is very important process for the maintenance of cellular homeostasis, functionality and survival. Its dysregulation is associated with high risk and progression numerous serious diseases (e.g., oncological, neurodegenerative and cardiovascular ones). Therefore, targeting mitophagy mechanisms is very hot topic in the biological and medicinal research. The interrelationships between the regulation of mitophagy and iron homeostasis are now becoming apparent. In short, mitochondria are central point for the regulation of iron homeostasis, but change in intracellular cheatable iron level can induce/repress mitophagy. In this review, relationships between iron homeostasis and mitophagy are thoroughly discussed and described. Also, therapeutic applicability of mitophagy chelators in the context of individual diseases is comprehensively and critically evaluated.
Assuntos
Quelantes de Ferro , Ferro , Mitocôndrias , Mitofagia , Mitofagia/efeitos dos fármacos , Humanos , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Ferro/metabolismo , Homeostase/efeitos dos fármacosRESUMO
Cell death is one of the most important mechanisms of maintaining homeostasis in our body. Ferroptosis and pyroptosis are forms of necrosis-like cell death. These cell death modalities play key roles in the pathophysiology of cancer, cardiovascular, neurological diseases, and other pathologies. Transition metals are abundant group of elements in all living organisms. This paper presents a summary of ferroptosis and pyroptosis pathways and their connection to significant transition metals, namely zinc (Zn), copper (Cu), molybdenum (Mo), lead (Pb), cobalt (Co), iron (Fe), cadmium (Cd), nickel (Ni), mercury (Hg), uranium (U), platinum (Pt), and one crucial element, selenium (Se). Authors aim to summarize the up-to-date knowledge of this topic.In this review, there are categorized and highlighted the most common patterns in the alterations of ferroptosis and pyroptosis by transition metals. Special attention is given to zinc since collected data support its dual nature of action in both ferroptosis and pyroptosis. All findings are presented together with a brief description of major biochemical pathways involving mentioned metals and are visualized in attached comprehensive figures.This work concludes that the majority of disruptions in the studied metals' homeostasis impacts cell fate, influencing both death and survival of cells in the complex system of altered pathways. Therefore, this summary opens up the space for further research.
RESUMO
Mitochondrial dysregulation plays a significant role in the carcinogenesis. On the other hand, its destabilization strongly represses the viability and metastatic potential of cancer cells. Photodynamic and photothermal therapies (PDT and PTT) target mitochondria effectively, providing innovative and non-invasive anticancer therapeutic modalities. Cyanine dyes, with strong mitochondrial selectivity, show significant potential in enhancing PDT and PTT. The potential and limitations of cyanine dyes for mitochondrial PDT and PTT are discussed, along with their applications in combination therapies, theranostic techniques, and optimal delivery systems. Additionally, novel approaches for sonodynamic therapy using photoactive cyanine dyes are presented, highlighting advances in cancer treatment.
RESUMO
Small extracellular vesicles (sEVs) secreted by various types of cells serve as crucial mediators of intercellular communication within the complex tumour microenvironment (TME). Tumour-derived small extracellular vesicles (TDEs) are massively produced and released by tumour cells, recapitulating the specificity of their cell of origin. TDEs encapsulate a variety of RNA species, especially messenger RNAs, microRNAs, long non-coding RNAs, and circular RNAs, which release to the TME plays multifaced roles in cancer progression through mediating cell proliferation, invasion, angiogenesis, and immune evasion. sEVs act as natural delivery vehicles of RNAs and can serve as useful targets for cancer therapy. This review article provides an overview of recent studies on TDEs and their RNA cargo, with emphasis on the role of these RNAs in carcinogenesis.
Assuntos
Vesículas Extracelulares , Neoplasias , Microambiente Tumoral , Humanos , Vesículas Extracelulares/metabolismo , Neoplasias/patologia , Neoplasias/genética , Neoplasias/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , RNA Longo não Codificante/genética , RNA Circular/genética , RNA Circular/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Comunicação Celular , RNA/genética , RNA/metabolismoRESUMO
Immune checkpoints regulate the immune system response. Recent studies suggest that flavonoids, known as phytoestrogens, may inhibit the PD-1/PD-L1 axis. We explored the potential of estrogens and 17 Selective Estrogen Receptor Modulators (SERMs) as inhibiting ligands for immune checkpoint proteins (CTLA-4, PD-L1, PD-1, and CD80). Our docking studies revealed strong binding energy values for quinestrol, quercetin, and bazedoxifene, indicating their potential to inhibit PD-1 and CTLA-4. Quercetin and bazedoxifene, known to modulate EGFR and IL-6R alongside estrogen receptors, can influence the immune checkpoint functionality. We discuss the impact of SERMs on PD-1 and CTLA-4, suggesting that these SERMs could have therapeutic effects through immune checkpoint inhibition. This study highlights the potential of SERMs as inhibitory ligands for immune checkpoint proteins, emphasizing the importance of considering PD-1 and CTLA-4 inhibition when evaluating SERMs as therapeutic agents. Our findings open new avenues for cancer immunotherapy by exploring the interaction between various SERMs and immune checkpoint pathways.
Assuntos
Proteínas de Checkpoint Imunológico , Neoplasias , Humanos , Antígeno CTLA-4 , Antígeno B7-H1 , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Receptor de Morte Celular Programada 1 , Moduladores de Receptor Estrogênico , Quercetina , Imunoterapia , Neoplasias/terapiaRESUMO
Exosomes are small vesicles of endosomal origin that are released by almost all cell types, even those that are pathologically altered. Exosomes widely participate in cell-to-cell communication via transferring cargo, including nucleic acids, proteins, and other metabolites, into recipient cells. Tumour-derived exosomes (TDEs) participate in many important molecular pathways and affect various hallmarks of cancer, including fibroblasts activation, modification of the tumour microenvironment (TME), modulation of immune responses, angiogenesis promotion, setting the pre-metastatic niche, enhancing metastatic potential, and affecting therapy sensitivity and resistance. The unique exosome biogenesis, composition, nontoxicity, and ability to target specific tumour cells bring up their use as promising drug carriers and cancer biomarkers. In this review, we focus on the role of exosomes, with an emphasis on their protein cargo, in the key mechanisms promoting cancer progression. We also briefly summarise the mechanism of exosome biogenesis, its structure, protein composition, and potential as a signalling hub in both normal and pathological conditions. Video Abstract.
Assuntos
Exossomos , Vesículas Extracelulares , Neoplasias , Humanos , Comunicação Celular , Transdução de Sinais , Microambiente TumoralRESUMO
OBJECTIVES: Cisplatin is a widely used anticancer drug for the treatment of many solid cancers. DNA damage is thought to be the key mechanism of cisplatin's anticancer activity. However, cisplatin may also affect cellular metabolism. The aim of this study was to determine the effect of cisplatin on the types of ATP production (OXPHOS versus glycolysis) and their rate in prostate cancer cells and to determine the potentially protective effect of autophagy and amino acids during cisplatin treatment. We also wanted to investigate the potential synergy between the metabolic effects of cisplatin on ATP production and the inhibition of autophagy. METHODS: Cisplatin treatment can significantly affect the metabolism of cancer cells. Important metabolic pathways can be altered, leading to changes in energy production and nutrient utilization. Autophagy and amino acid pool modulations can serve as protective mechanisms significantly affecting tumor cell survival under metabolic stress caused by anticancer treatment. By enabling the recycling of amino acids, autophagy helps cancer cells maintain cellular homeostasis and overcome nutrient limitations. Thus, inhibition of autophagy could have a supportive effect on the metabolic effects of cisplatin. RESULTS: After cisplatin treatment, ATP production by way of OXPHOS was significantly decreased in 22Rv1 and PC-3 cells. On the other hand, ATP production by glycolysis was not significantly affected in 22Rv1 cells. DU145 cells with dysfunctional autophagy were the most sensitive to cisplatin treatment and showed the lowest ATP production. However, short-term autophagy inhibition (24h) by autophinib or SAR405 in 22Rv1 and PC-3 cells did not alter the effect of cisplatin on ATP production. Levels of some amino acids (arginine, methionine) significantly affected the fitness of cancer cells. CONCLUSION: Persistent defects of autophagy can affect the metabolic sensitivity of cancer cells due to interference with arginine metabolism. Amino acids contained in the culture medium had an impact on the overall effect of cisplatin (Fig. 3, Ref. 38).
Assuntos
Cisplatino , Neoplasias da Próstata , Pirazóis , Piridinas , Pirimidinas , Pirimidinonas , Masculino , Humanos , Cisplatino/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Autofagia , Linhagem Celular Tumoral , Aminoácidos/farmacologia , Aminoácidos/metabolismo , Trifosfato de Adenosina/farmacologia , ArgininaRESUMO
TET proteins (methylcytosine dioxygenases) play an important role in the regulation of gene expression. Dysregulation of their activity is associated with many serious pathogenic states such as oncological diseases. Regulation of their activity by specific inhibitors could represent a promising therapeutic strategy. Therefore, this review describes various types of TET protein inhibitors in terms of their inhibitory mechanism and possible applicability. The potential and possible limitations of this approach are thoroughly discussed in the context of TET protein functionality in living systems. Furthermore, possible therapeutic strategies based on the inhibition of TET proteins are presented and evaluated, especially in the field of oncological diseases.
Assuntos
Dioxigenases , Dioxigenases/antagonistas & inibidoresRESUMO
Cancer-associated fibroblasts (CAFs) are involved in critical aspects of head and neck squamous cell carcinoma (HNSCC) pathogenesis, such as the formation of a tumor-permissive extracellular matrix structure, angiogenesis, or immune and metabolic reprogramming of the tumor microenvironment (TME), with implications for metastasis and resistance to radiotherapy and chemotherapy. The pleiotropic effect of CAFs in TME is likely to reflect the heterogeneity and plasticity of their population, with context-dependent effects on carcinogenesis. The specific properties of CAFs provide many targetable molecules that could play an important role in the future therapy of HNSCC. In this review article, we will focus on the role of CAFs in the TME of HNSCC tumors. We will also discuss clinically relevant agents targeting CAFs, their signals, and signaling pathways, which are activated by CAFs in cancer cells, with the potential for repurposing for HNSCC therapy.
Assuntos
Fibroblastos Associados a Câncer , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Microambiente Tumoral , Neoplasias de Cabeça e Pescoço/metabolismo , Transdução de SinaisRESUMO
Extracellular vesicles (EVs) are important mediators of intercellular communication in the tumour microenvironment. Many studies suggest that cancer cells release higher amounts of EVs exposing phosphatidylserine (PS) at the surface. There are lots of interconnections between EVs biogenesis and autophagy machinery. Modulation of autophagy can probably affect not only the quantity of EVs but also their content, which can deeply influence the resulting pro-tumourigenic or anticancer effect of autophagy modulators. In this study, we found that autophagy modulators autophinib, CPD18, EACC, bafilomycin A1 (BAFA1), 3-hydroxychloroquine (HCQ), rapamycin, NVP-BEZ235, Torin1, and starvation significantly alter the composition of the protein content of phosphatidylserine-positive EVs (PS-EVs) produced by cancer cells. The greatest impact had HCQ, BAFA1, CPD18, and starvation. The most abundant proteins in PS-EVs were proteins typical for extracellular exosomes, cytosol, cytoplasm, and cell surface involved in cell adhesion and angiogenesis. PS-EVs protein content involved mitochondrial proteins and signalling molecules such as SQSTM1 and TGFß1 pro-protein. Interestingly, PS-EVs contained no commonly determined cytokines, such as IL-6, IL-8, GRO-α, MCP-1, RANTES, and GM-CSF, which indicates that secretion of these cytokines is not predominantly mediated through PS-EVs. Nevertheless, the altered protein content of PS-EVs can still participate in the modulation of the fibroblast metabolism and phenotype as p21 was accumulated in fibroblasts influenced by EVs derived from CPD18-treated FaDu cells. The altered protein content of PS-EVs (data are available via ProteomeXchange with identifier PXD037164) also provides information about the cellular compartments and processes that are affected by the applied autophagy modulators. Video Abstract.
Assuntos
Exossomos , Vesículas Extracelulares , Fosfatidilserinas , Autofagia , CitocinasRESUMO
Most cancer-related deaths among patients with solid tumors are caused by metastases. Migrastatic strategies represent a unique therapeutic approach to prevent all forms of cancer cell migration and invasion. Because the migration machinery has been shown to promote metastatic dissemination, successful migrastatic therapy may reduce the need for high-dose cytotoxic therapies that are currently used to prevent the risk of metastatic dissemination. In this review we focus on anti-invasive and antimetastatic strategies that hold promise for the treatment of solid tumors. The best targets for migrastatic therapy would be those that are required by all forms of motility, such as ATP availability, mitochondrial metabolism, and cytoskeletal dynamics and cell contractility.
Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Movimento CelularRESUMO
Prostate cancer is the most commonly diagnosed tumor disease in men, and its treatment is still a big challenge in standard oncology therapy. Magnetically actuated microrobots represent the most promising technology in modern nanomedicine, offering the advantage of wireless guidance, effective cell penetration, and non-invasive actuation. Here, new biodegradable magnetically actuated zinc/cystine-based microrobots for in situ treatment of prostate cancer cells are reported. The microrobots are fabricated via metal-ion-mediated self-assembly of the amino acid cystine encapsulating superparamagnetic Fe3 O4 nanoparticles (NPs) during the synthesis, which allows their precise manipulation by a rotating magnetic field. Inside the cells, the typical enzymatic reducing environment favors the disassembly of the aminoacidic chemical structure due to the cleavage of cystine disulfide bonds and disruption of non-covalent interactions with the metal ions, as demonstrated by in vitro experiments with reduced nicotinamide adenine dinucleotide (NADH). In this way, the cystine microrobots served for site-specific delivery of Zn2+ ions responsible for tumor cell killing via a "Trojan horse effect". This work presents a new concept of cell internalization exploiting robotic systems' self-degradation, proposing a step forward in non-invasive cancer therapy.
Assuntos
Cistina , Neoplasias da Próstata , Masculino , Humanos , ZincoRESUMO
Mitochondria generate energy and building blocks required for cellular growth and function. The notion that mitochondria are not involved in the cancer growth has been challenged in recent years together with the emerging idea of mitochondria as a promising therapeutic target for oncologic diseases. Pentamethinium salts, cyan dyes with positively charged nitrogen on the benzothiazole or indole part of the molecule, were originally designed as mitochondrial probes. In this study, we show that pentamethinium salts have a strong effect on mitochondria, suppressing cancer cell proliferation and migration. This is likely linked to the strong inhibitory effect of the salts on dihydroorotate dehydrogenase (DHODH)-dependent respiration that has a key role in the de novo pyrimidine synthesis pathway. We also show that pentamethinium salts cause oxidative stress, redistribution of mitochondria, and a decrease in mitochondria mass. In conclusion, pentamethinium salts present novel anti-cancer agents worthy of further studies.
Assuntos
Neoplasias , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Di-Hidro-Orotato Desidrogenase , Humanos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Respiração , Sais/metabolismoRESUMO
Photocatalytic micromotors that exhibit wireless and controllable motion by light have been extensively explored for cancer treatment by photodynamic therapy (PDT). However, overexpressed glutathione (GSH) in the tumor microenvironment can down-regulate the reactive oxygen species (ROS) level for cancer therapy. Herein, we present dendrite-shaped light-powered hematite microrobots as an effective GSH depletion agent for PDT of prostate cancer cells. These hematite microrobots can display negative phototactic motion under light irradiation and flexible actuation in a defined path controlled by an external magnetic field. Non-contact transportation of micro-sized cells can be achieved by manipulating the microrobot's motion. In addition, the biocompatible microrobots induce GSH depletion and greatly enhance PDT performance. The proposed dendrite-shaped hematite microrobots contribute to developing dual light/magnetic field-powered micromachines for the biomedical field.
Assuntos
Fotoquimioterapia , Neoplasias da Próstata , Masculino , Humanos , Glutationa , Campos Magnéticos , Neoplasias da Próstata/tratamento farmacológico , Dendritos , Microambiente TumoralRESUMO
IL-6 signaling is involved in the pathogenesis of a number of serious diseases, including chronic inflammation and cancer. Targeting of IL-6 receptor (IL-6R) by small molecules is therefore an intensively studied strategy in cancer treatment. We describe the design, synthesis, and characteristics of two new bis-pentamethinium salts 5 and 6 (meta and para) bearing indole moieties. Molecular docking studies showed that both compounds have the potential to bind IL-6R (free energy of binding -9.5 and -8.1 kcal/mol). The interaction with IL-6R was confirmed using microscale thermophoresis analyses, which revealed that both compounds had strong affinity for the IL-6R (experimentally determined dissociation constants 26.5 ± 2.5 nM and 304 ± 27.6 nM, respectively). In addition, both compounds were cytotoxic for a broad spectrum of cancer cell lines in micromolar concentrations, most likely due to their accumulation in mitochondria and inhibition of mitochondrial respiration. In summary, the structure motif of bis-pentamethinium salts represents a promising starting point for the design of novel multitargeting compounds with the potential to inhibit IL-6 signaling and simultaneously target mitochondrial metabolism in cancer cells.
RESUMO
Head and neck squamous cell carcinomas (HNSCC) belong among severe and highly complex malignant diseases showing a high level of heterogeneity and consequently also a variance in therapeutic response, regardless of clinical stage. Our study implies that the progression of HNSCC may be supported by cancer-associated fibroblasts (CAFs) in the tumour microenvironment (TME) and the heterogeneity of this disease may lie in the level of cooperation between CAFs and epithelial cancer cells, as communication between CAFs and epithelial cancer cells seems to be a key factor for the sustained growth of the tumour mass. In this study, we investigated how CAFs derived from tumours of different mRNA subtypes influence the proliferation of cancer cells and their metabolic and biomechanical reprogramming. We also investigated the clinicopathological significance of the expression of these metabolism-related genes in tissue samples of HNSCC patients to identify a possible gene signature typical for HNSCC progression. We found that the right kind of cooperation between cancer cells and CAFs is needed for tumour growth and progression, and only specific mRNA subtypes can support the growth of primary cancer cells or metastases. Specifically, during coculture, cancer cell colony supporting effect and effect of CAFs on cell stiffness of cancer cells are driven by the mRNA subtype of the tumour from which the CAFs are derived. The degree of colony-forming support is reflected in cancer cell glycolysis levels and lactate shuttle-related transporters.