Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 19(6)2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921756

RESUMO

Schistosomiasis, caused by helminth flatworms of the genus Schistosoma, is an infectious disease mainly associated with poverty that affects millions of people worldwide. Since treatment for this disease relies only on the use of praziquantel, there is an urgent need to identify new antischistosomal drugs. Piplartine is an amide alkaloid found in several Piper species (Piperaceae) that exhibits antischistosomal properties. The aim of this study was to evaluate the structure­function relationship between piplartine and its five synthetic analogues (19A, 1G, 1M, 14B and 6B) against Schistosoma mansoni adult worms, as well as its cytotoxicity to mammalian cells using murine fibroblast (NIH-3T3) and BALB/cN macrophage (J774A.1) cell lines. In addition, density functional theory calculations and in silico analysis were used to predict physicochemical and toxicity parameters. Bioassays revealed that piplartine is active against S. mansoni at low concentrations (5⁻10 µM), but its analogues did not. In contrast, based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays, piplartine exhibited toxicity in mammalian cells at 785 µM, while its analogues 19A and 6B did not reduce cell viability at the same concentrations. This study demonstrated that piplartine analogues showed less activity against S. mansoni but presented lower toxicity than piplartine.


Assuntos
Anti-Helmínticos/farmacologia , Piperidonas/farmacologia , Extratos Vegetais/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Células 3T3 , Animais , Anti-Helmínticos/química , Anti-Helmínticos/toxicidade , Cricetinae , Fibroblastos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Piper/química , Piperidonas/química , Piperidonas/toxicidade , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Relação Quantitativa Estrutura-Atividade , Caramujos
2.
PLoS One ; 13(5): e0196667, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29750792

RESUMO

Schistosomiasis is a disease caused by parasites of the genus Schistosoma, currently affecting more than 200 million people. Among the various species of this parasite that infect humans, S. mansoni is the most common. Pharmacological treatment is limited to the use of a single drug, praziquantel (PZQ), despite reports of parasite resistance and low efficacy. It is therefore necessary to investigate new potential schistosomicidal compounds. In this study, we tested the efficacy of epiisopilosine (EPIIS) in a murine model of schistosomiasis. A single dose of EPIIS (100 or 400 mg/kg) administered orally to mice infected with adult S. mansoni resulted in reduced worm burden and egg production. The treatment with the lower dose of EPIIS (100 mg/kg) significantly reduced total worm burden by 60.61% (P < 0.001), as well as decreasing hepatosplenomegaly and egg excretion. Scanning electron microscopy revealed morphological changes in the worm tegument after treatment. Despite good activity of EPIIS in adult S. mansoni, oral treatment with single dose of EPIIS 100 mg/kg had only moderate effects in mice infected with juvenile S. mansoni. In addition, we performed cytotoxicity and toxicological studies with EPIIS and found no in vitro cytotoxicity (in HaCaT, and NIH-3T3 cells) at a concentration of 512 µg/mL. We also performed in silico analysis of toxicological properties and showed that EPIIS had low predicted toxicity. To confirm this, we investigated systemic acute toxicity in vivo by orally administering a 2000 mg/kg dose to Swiss mice. Treated mice showed no significant changes in hematological, biochemical, or histological parameters compared to non-treated animals. Epiisopilosine showed potential as a schistosomicidal drug: it did not cause acute toxicity and it displayed an acceptable safety profile in the animal model.


Assuntos
Alcaloides/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Esquistossomose mansoni/tratamento farmacológico , Animais , Linhagem Celular , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Contagem de Ovos de Parasitas/métodos , Praziquantel/farmacologia , Esquistossomose mansoni/parasitologia , Esquistossomicidas/farmacologia
3.
Eur J Med Chem ; 139: 401-411, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-28810191

RESUMO

The vasoactive proline-rich oligopeptide termed BPP-BrachyNH2 (H-WPPPKVSP-NH2) induces in vitro inhibitory activity of angiotensin I-converting enzyme (ACE) in rat blood serum. In the present study, the removal of N-terminal tryptophan or C-terminal proline from BPP-BrachyNH2 was investigated in order to predict which structural components are important or required for interaction with ACE. Furthermore, the toxicological profile was assessed by in silico prediction and in vitro MTT assay. Two BPP-BrachyNH2 analogues (des-Trp1-BPP-BrachyNH2 and des-Pro8-BPP-BrachyNH2) were synthesized, and in vitro and in silico ACE inhibitory activity and toxicological profile were assessed. The des-Trp1-BPP-BrachyNH2 and des-Pro8-BPP-BrachyNH2 were respectively 3.2- and 29.5-fold less active than the BPP-BrachyNH2-induced ACE inhibitory activity. Molecular Dynamic and Molecular Mechanics Poisson-Boltzmann Surface Area simulations (MM-PBSA) demonstrated that the ACE/BBP-BrachyNH2 complex showed lower binding and van der Wall energies than the ACE/des-Pro8-BPP-BrachyNH2 complex, therefore having better stability. The removal of the N-terminal tryptophan increased the in silico predicted toxicological effects and cytotoxicity when compared with BPP-BrachyNH2 or des-Pro8-BPP-BrachyNH2. Otherwise, des-Pro8-BPP-BrachyNH2 was 190-fold less cytotoxic than BPP-BrachyNH2. Thus, the removal of C-terminal proline residue was able to markedly decrease both the BPP-BrachyNH2-induced ACE inhibitory and cytotoxic effects assessed by in vitro and in silico approaches. In conclusion, the aminoacid sequence of BPP-BrachyNH2 is essential for its ACE inhibitory activity and associated with an acceptable toxicological profile. The perspective of the interactions of BPP-BrachyNH2 with ACE found in the present study can be used for development of drugs with differential therapeutic profile than current ACE inhibitors.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Oligopeptídeos/farmacologia , Peptidil Dipeptidase A/metabolismo , Prolina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/síntese química , Inibidores da Enzima Conversora de Angiotensina/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Hemólise , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Estrutura Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/química , Prolina/química , Ratos , Ratos Wistar , Ovinos , Relação Estrutura-Atividade
4.
Med Chem ; 13(6): 592-603, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28266277

RESUMO

BACKGROUND: Bergenin, a compound derived from gallic acid, is a secondary metabolite of the plant Peltophorum dubium (Spreng.) Taub. OBJECTIVE: In this study, we aimed to characterize the ability of bergenin to eliminate the radicals in non-biological systems. METHODS: We evaluated bergenin's ability to protect erythrocytes from oxidative damage in a biological system. We have elucidated bergenin structure using nuclear magnetic resonance, X-ray diffraction, Fourier transform infrared spectroscopy, and differential scanning calorimetry. We then evaluated its antioxidant capacity in vitro against DPPH•, ABTS•+, hydroxyl radicals, and nitric oxide, and determined its ability to transfer electrons owing to its reduction potential and ability to chelate iron. We also evaluated its protective capacity against oxidative damage produced by AAPH in erythrocytes, its hemolytic properties, its ability to inhibit hemolysis, and its ability to maintain intracellular reduced glutathione homeostasis. RESULTS: Bergenin concentrations between 0.1 and 3mM significantly (p < 0.05) and dose dependently decreased formation of ABTS•+, DPPH•, nitrite ions, OH•, reduced formation ferricyanide, ferrozine-Fe2+complex, inhibited AAPH-induced oxidative hemolysis of erythrocytes, raised GSH levels in the presence of AAPH, inhibited AAPH-induced lipid peroxidation in erythrocytes. CONCLUSION: Bergenin may represent a novel alternative antioxidant, with potential applications in various industries, including drugs, cosmetics, and foods.


Assuntos
Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Benzopiranos/isolamento & purificação , Benzopiranos/farmacologia , Eritrócitos/efeitos dos fármacos , Fabaceae/química , Animais , Antioxidantes/química , Benzopiranos/química , Benzotiazóis/química , Compostos de Bifenilo/química , Transporte de Elétrons/efeitos dos fármacos , Eritrócitos/metabolismo , Feminino , Glutationa/metabolismo , Hemólise/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Radical Hidroxila/química , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ferro/química , Peroxidação de Lipídeos/efeitos dos fármacos , Modelos Moleculares , Conformação Molecular , Nitritos/química , Picratos/química , Ratos , Ratos Wistar , Ácidos Sulfônicos/química
5.
Mater Sci Eng C Mater Biol Appl ; 61: 832-41, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26838914

RESUMO

Cry1Ab16 is a toxin of crystalline insecticidal proteins that has been widely used in genetically modified organisms (GMOs) to gain resistance to pests. For the first time, in this study, peptides derived from the immunogenic Cry1Ab16 toxin (from Bacillus thuringiensis) were immobilized as layer-by-layer (LbL) films. Given the concern about food and environmental safety, a peptide with immunogenic potential, PcL342-354C, was selected for characterization of the electrochemical, optical, and morphological properties. The results obtained by cyclic voltammetry (CV) showed that the peptide have an irreversible oxidation process in electrolyte of 0.1 mol · L(-1) potassium phosphate buffer (PBS) at pH7.2. It was also observed that the electrochemical response of the peptide is governed mainly by charge transfer. In an attempt to maximize the electrochemical signal of peptide, it was intercalated with natural (agar, alginate and chitosan) or synthetic polymers (polyethylenimine (PEI) and poly(sodium 4-styrenesulfonate (PSS)). The presence of synthetic polymers on the film increased the electrochemical signal of PcL342-354C up to 100 times. Images by Atomic Force Microscopy (AFM) showed that the immobilized PcL342-354C formed self-assembled nanofibers with diameters ranging from 100 to 200 nm on the polymeric film. By UV-Visible spectroscopy (UV-Vis) it was observed that the ITO/PEI/PSS/PcL342-354C film grows linearly up to the fifth layer, thereafter tending to saturation. X-ray diffraction confirmed the presence on the films of crystalline ITO and amorphous polypeptide phases. In general, the ITO/PEI/PSS/PcL342-354C film characterization proved that this system is an excellent candidate for applications in electrochemical sensors and other biotechnological applications for GMOs and environmental indicators.


Assuntos
Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/química , Endotoxinas/química , Proteínas Hemolisinas/química , Peptídeos/química , Alginatos/química , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/metabolismo , Quitosana/química , Dicroísmo Circular , Técnicas Eletroquímicas , Endotoxinas/metabolismo , Ácido Glucurônico/química , Proteínas Hemolisinas/metabolismo , Ácidos Hexurônicos/química , Microscopia de Força Atômica , Nanofibras/química , Oxirredução , Polietilenoimina/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos de Estanho/química
6.
PLoS Negl Trop Dis ; 9(3): e0003656, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25816129

RESUMO

Schistosomiasis is a serious disease currently estimated to affect more that 207 million people worldwide. Due to the intensive use of praziquantel, there is increasing concern about the development of drug-resistant strains. Therefore, it is necessary to search for and investigate new potential schistosomicidal compounds. This work reports the in vivo effect of the alkaloid epiisopiloturine (EPI) against adults and juvenile worms of Schistosoma mansoni. EPI was first purified its thermal behavior and theoretical solubility parameters charaterised. In the experiment, mice were treated with EPI over the 21 days post-infection with the doses of 40 and 200 mg/kg, and 45 days post-infection with single doses of 40, 100 and 300 mg/kg. The treatment with EPI at 40 mg/kg was more effective in adult worms when compared with doses of 100 and 300 mg/kg. The treatment with 40 mg/kg in adult worms reduced parasite burden significantly, lead to reduction in hepatosplenomegaly, reduced the egg burden in faeces, and decreased granuloma diameter. Scanning electron microscopy revealed morphological changes to the parasite tegument after treatment, including the loss of important features. Additionally, the in vivo treatment against juvenile with 40 mg/kg showed a reduction of the total worm burden of 50.2%. Histopathological studies were performed on liver, spleen, lung, kidney and brain and EPI was shown to have a DL50 of 8000 mg/kg. Therefore EPI shows potential to be used in schistosomiasis treatment. This is the first time that schistosomicidal in vivo activity of EPI has been reported.


Assuntos
4-Butirolactona/análogos & derivados , Imidazóis/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Esquistossomose mansoni/tratamento farmacológico , Esquistossomicidas/farmacologia , 4-Butirolactona/farmacologia , Animais , Relação Dose-Resposta a Droga , Fezes/parasitologia , Granuloma/patologia , Fígado/efeitos dos fármacos , Fígado/parasitologia , Camundongos , Microscopia Eletrônica de Varredura , Schistosoma mansoni/ultraestrutura
8.
J Agric Food Chem ; 52(8): 2382-5, 2004 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-15080650

RESUMO

The alpha zein, the maize storage prolamin, is a mixture of several homologous polypeptides that shows two bands in SDS-PAGE, called Z19 and Z22. The conformation studies carried out by several authors in this mixture are conflicting. To elucidate these inconsistencies, we analyzed the conformation of the Z19 fraction, extracted from BR451 maize variety by Fourier transform infrared spectroscopy, nuclear magnetic resonance, and small-angle X-ray scattering. The infrared results show that Z19 has 46% of alpha helix and 22% of beta sheet. The fast N-H to N-D exchange measured by (1)H NMR spectroscopy showed that Z19 is not a compact structure. The scattering measurements indicated an extended structure with 12 by 130 A. With these data, we have modeled the Z19 structure as a hairpin, composed of helical, sheet, turns, and secondary structures, folded back on itself.


Assuntos
Conformação Proteica , Zea mays/química , Zeína/química , Espectroscopia de Ressonância Magnética , Espalhamento de Radiação , Espectroscopia de Infravermelho com Transformada de Fourier , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA