Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Eye Res ; 119: 88-96, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24316158

RESUMO

Insertion of light-gated channels into inner retina neurons restores neural light responses, light evoked potentials, visual optomotor responses and visually-guided maze behavior in mice blinded by retinal degeneration. This method of vision restoration bypasses damaged outer retina, providing stimulation directly to retinal ganglion cells in inner retina. The approach is similar to that of electronic visual protheses, but may offer some advantages, such as avoidance of complex surgery and direct targeting of many thousands of neurons. However, the promise of this technique for restoring human vision remains uncertain because rodent animal models, in which it has been largely developed, are not ideal for evaluating visual perception. On the other hand, psychophysical vision studies in macaque can be used to evaluate different approaches to vision restoration in humans. Furthermore, it has not been possible to test vision restoration in macaques, the optimal model for human-like vision, because there has been no macaque model of outer retina degeneration. In this study, we describe development of a macaque model of photoreceptor degeneration that can in future studies be used to test restoration of perception by visual prostheses. Our results show that perceptual deficits caused by focal light damage are restricted to locations at which photoreceptors are damaged, that optical coherence tomography (OCT) can be used to track such lesions, and that adaptive optics retinal imaging, which we recently used for in vivo recording of ganglion cell function, can be used in future studies to examine these lesions.


Assuntos
Células Fotorreceptoras/patologia , Degeneração Retiniana/patologia , Células Ganglionares da Retina/patologia , Baixa Visão/etiologia , Acuidade Visual , Animais , Progressão da Doença , Angiofluoresceinografia , Fundo de Olho , Macaca , Degeneração Retiniana/complicações , Degeneração Retiniana/fisiopatologia , Tomografia de Coerência Óptica , Baixa Visão/patologia , Baixa Visão/fisiopatologia
2.
Invest Ophthalmol Vis Sci ; 52(5): 2775-83, 2011 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-21310920

RESUMO

PURPOSE: Adeno-associated virus serotype 2 (AAV2) has been shown to be effective in transducing inner retinal neurons after intravitreal injection in several species. However, results in nonprimates may not be predictive of transduction in the human inner retina, because of differences in eye size and the specialized morphology of the high-acuity human fovea. This was a study of inner retina transduction in the macaque, a primate with ocular characteristics most similar to that of humans. METHODS: In vivo imaging and histology were used to examine GFP expression in the macaque inner retina after intravitreal injection of AAV vectors containing five distinct promoters. RESULTS: AAV2 produced pronounced GFP expression in inner retinal cells of the fovea, no expression in the central retina beyond the fovea, and variable expression in the peripheral retina. AAV2 vector incorporating the neuronal promoter human connexin 36 (hCx36) transduced ganglion cells within a dense annulus around the fovea center, whereas AAV2 containing the ubiquitous promoter hybrid cytomegalovirus (CMV) enhancer/chicken-ß-actin (CBA) transduced both Müller and ganglion cells in a dense circular disc centered on the fovea. With three shorter promoters--human synapsin (hSYN) and the shortened CBA and hCx36 promoters (smCBA and hCx36sh)--AAV2 produced visible transduction, as seen in fundus images, only when the retina was altered by ganglion cell loss or enzymatic vitreolysis. CONCLUSIONS: The results in the macaque suggest that intravitreal injection of AAV2 would produce high levels of gene expression at the human fovea, important in retinal gene therapy, but not in the central retina beyond the fovea.


Assuntos
Dependovirus/genética , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Microglia/metabolismo , Células Ganglionares da Retina/metabolismo , Transdução Genética , Actinas/genética , Animais , Axônios/metabolismo , Conexinas/genética , Expressão Gênica , Genes Reporter , Injeções Intravítreas , Macaca , Microscopia Confocal , Sinapsinas/genética , Proteína delta-2 de Junções Comunicantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA