Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Arch Toxicol ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158710

RESUMO

Seas worldwide are threatened by an emerging source of pollution as millions of tons of warfare materials were dumped after the World Wars. As their metal shells are progressively corroding, energetic compounds (EC) leak out and distribute in the marine environment. EC are taken up by aquatic organisms and pose a threat to both the marine ecosphere and the human seafood consumer because of their toxicity and potential carcinogenicity. Here, sediment samples and fish from different locations in the German North Sea of Lower Saxony were examined to determine whether EC transfer to fish living close to munition dumping areas. EC were found in sediments with a maximum concentration of 1.5 ng/kg. All analyzed fish muscle tissues/fillets and bile samples were positive for EC detection. In bile, the max. EC concentrations ranged between 0.25 and 1.25 ng/mL. Interestingly, while detected TNT metabolites in the muscle tissues were in concentrations of max. 1 ng/g (dry weight), TNT itself was found in concentrations of up to 4 ng/g (dry weight). As we found considerable higher amounts of non-metabolized TNT in the fish muscle, rather than TNT metabolites, we conclude an additional absorption route of EC into fish other than per diet. This is the first study to detect EC in the edible parts of fish caught randomly in the North Sea.

2.
Redox Biol ; 72: 103082, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38527399

RESUMO

The explosive compound 2,4,6-trinitrotoluene (TNT) is well known as a major component of munitions. In addition to its potential carcinogenicity and mutagenicity in humans, recent reports have highlighted TNT toxicities in diverse organisms due to its occurrence in the environment. These toxic effects have been linked to the intracellular metabolism of TNT, which is generally characterised by redox cycling and the generation of noxious reactive molecules. The reactive intermediates formed, such as nitroso and hydroxylamine compounds, also interact with oxygen molecules and cellular components to cause macromolecular damage and oxidative stress. The current review aims to highlight the crucial role of TNT metabolism in mediating TNT toxicity, via increased generation of reactive oxygen species. Cellular proliferation of reactive species results in depletion of cellular antioxidant enzymes, DNA and protein adduct formation, and oxidative stress. While TNT toxicity is well known, its ability to induce oxidative stress, resulting from its reductive activation, suggests that some of its toxic effects may be caused by its reactive metabolites. Hence, further research on TNT metabolism is imperative to elucidate TNT-induced toxicities.


Assuntos
Estresse Oxidativo , Espécies Reativas de Oxigênio , Trinitrotolueno , Trinitrotolueno/metabolismo , Trinitrotolueno/toxicidade , Humanos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ativação Metabólica , Animais , Substâncias Explosivas/metabolismo , Substâncias Explosivas/toxicidade , Oxirredução
3.
Environ Sci Technol ; 57(48): 20169-20181, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37933956

RESUMO

Submerged munitions from World War I and II are threatening human activities in the oceans, including fisheries and shipping or the construction of pipelines and offshore facilities. To avoid unforeseen explosions, remotely controlled "blast-in-place" (BiP) operations are a common practice worldwide. However, after underwater BiP detonations, the toxic and carcinogenic energetic compounds (ECs) will not completely combust but rather distribute within the marine ecosphere. To shed light on this question, two comparable World War II mines in Denmark's Sejerø Bay (Baltic Sea) were blown up by either low-order or high-order BiP operations by the Royal Danish Navy. Water and sediment samples were taken before and immediately after the respective BiP operation and analyzed for the presence of ECs with sensitive GC-MS/MS and LC-MS/MS technology. EC concentrations increased after high-order BiP detonations up to 353 ng/L and 175 µg/kg in water and sediment, respectively, while low-order BiP detonations resulted in EC water and sediment concentrations up to 1,000,000 ng/L (1 mg/L) and >10,000,000 µg/kg (>10 g/kg), respectively. Our studies provide unequivocal evidence that BiP operations in general lead to a significant increase of contamination of the marine environment and ecotoxicological risk with toxic ECs. Moreover, as compared to high-order BiP detonations, low-order BiP detonations resulted in a several 1000-fold higher burden on the marine environment.


Assuntos
Explosões , Poluentes Químicos da Água , Humanos , Espectrometria de Massas em Tandem , Cromatografia Líquida , Oceanos e Mares , Água , Poluentes Químicos da Água/toxicidade
4.
Toxics ; 11(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37112574

RESUMO

Submerged munitions are present in marine waters across the globe. They contain energetic compounds (ECs), such as TNT and metabolites thereof, which are considered carcinogenic, exhibit toxic effects in marine organisms, and may affect human health. The aim of this study was to investigate the occurrence of ECs and their trends in blue mussels from the annual collections of the German Environmental Specimen Bank sampled over the last 30 years at three different locations along the coastline of the Baltic and North Sea. Samples were analyzed by GC-MS/MS for 1,3-dinitrobenzene (1,3-DNB), 2,4-dinitrotoluene (2,4-DNT), 2,4,6-trinitrotoluene (TNT), 2-amino-4,6-dinitrotoluene (2-ADNT), and 4-amino-2,6-dinitrotoluene (4-ADNT). The first signals indicating trace levels of 1,3-DNB were observed in samples from 1999 and 2000. ECs were also found below the limit of detection (LoD) in subsequent years. From 2012 onwards, signals just above the LoD were detected. The highest signal intensities of 2-ADNT and 4-ADNT, just below the LoQ (0.14 ng/g d.w. and 0.17 ng/g d.w., respectively), were measured in 2019 and 2020. This study clearly shows that corroding submerged munitions are gradually releasing ECs into the waters that can be detected in randomly sampled blue mussels, even though the concentrations measured are still in the non-quantifiable trace range.

5.
Sci Total Environ ; 857(Pt 1): 159324, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36216058

RESUMO

In addition to endangering sea traffic, cable routes, and wind farms, sunken warship wrecks with dangerous cargo, fuel, or munitions on board may emerge as point sources for environmental damage. Energetic compounds such as TNT (which could leak from these munitions) are known for their toxicity, mutagenicity, and carcinogenicity. These compounds may cause potential adverse effects on marine life via contamination of the marine ecosystem, and their entry into the marine and human food chain could directly affect human health. To ascertain the impending danger of an environmental catastrophe posed by sunken warships, the North Sea Wrecks (NSW) project (funded by the Interreg North Sea Region Program) was launched in 2018. Based on historical data (derived from military archives) including the calculated amount of munitions still on board, its known location and accessibility, the German World War II ship "Vorpostenboot 1302" (former civilian name - "JOHN MAHN") was selected as a case study to investigate the leakage and distribution of toxic explosives in the marine environment. The wreck site and surrounding areas were mapped in great detail by scientific divers and a multibeam echosounder. Water and sediment samples were taken in a cross-shaped pattern around the wreck. To assess a possible entry into the marine food chain, caged mussels were exposed at the wreck, and wild fish (pouting), a sedentary species that stays locally at the wreck, were caught. All samples were analyzed for the presence of TNT and derivatives thereof by GC-MS/MS analysis. As a result, we could provide evidence that sunken warship wrecks emerge as a point source of contamination with nitroaromatic energetic compounds leaking from corroding munitions cargo still on board. Not only did we find these explosive substances in bottom water and sediment samples around the wreck, but also in the caged mussels as well as in wild fish living at the wreck. Fortunately so far, the concentrations found in mussel meat and fish filet were only in the one-digit ng per gram range thus indicating no current concern for the human seafood consumer. However, in the future the situation may worsen as the corrosion continues. From our study, it is proposed that wrecks should not only be ranked according to critical infrastructure and human activities at sea, but also to the threats they pose to the environment and the human seafood consumer.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Animais , Humanos , Ecossistema , II Guerra Mundial , Fontes Geradoras de Energia , Espectrometria de Massas em Tandem , Vento , Peixes , Água/análise , Poluentes Químicos da Água/análise
6.
Chem Biol Interact ; 354: 109823, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35065925

RESUMO

Members of the aldo-keto reductase and short-chain dehydrogenase/reductase enzyme superfamilies catalyze the conversion of a wide range of substrates, including carbohydrates, lipids, and steroids. These enzymes also participate in the transformation of xenobiotics, inactivation of the cytostatics doxo- and daunorubicin, and play a role in the development of cancer. Therefore, inhibitors of such enzymes may improve therapeutic outcomes. Plant-derived compounds such as anthraquinones have been used for medicinal purposes for several centuries. In the current study, the inhibitory potential of selected anthrone and anthraquinone derivatives (from plants) was tested on six recombinant human carbonyl reducing enzymes (AKR1B1, AKR1B10, AKR1C3, AKR7A2, AKR7A3, CBR1) isolated from an Escherichia coli expression system. Overall, the least inhibition was observed with the anthrone derivative aloin, while IC50 values obtained with the anthraquinone derivatives (frangula emodin, aloe emodin, frangulin A, and frangulin B) and the aldo-keto reductase AKR1B10 were in the low micromolar range (3.5-16.6 µM). AKR1B1 inhibition was significantly weaker in comparison with AKR1B10 inhibition (IC50 values > 50 µM). The strongest inhibition was observed with the short-chain dehydrogenase/reductase CBR1. AKR7A2, AKR7A3, and AKR1C3 were not, or less inhibited by inhibitor concentrations of up to 50 µM. Analysis of the kinetic data suggests noncompetitive or uncompetitive inhibition mechanisms. The new inhibitors described here may serve as lead structures for the development of future drugs.


Assuntos
Aldeído Redutase
7.
Chem Biol Interact ; 350: 109685, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653397

RESUMO

The increasing levels of estrogens and pollution by other steroids pose considerable challenges to the environment. In this study, the genome of Gordonia polyisoprenivorans strain R9, one of the most effective 17 beta-estradiol- and steroid-degrading bacteria, was sequenced and annotated. The circular chromosome of G. polyisoprenivorans R9 was 6,033,879 bp in size, with an average GC content of 66.91%. More so, 5213 putative protein-coding sequences, 9 rRNA, 49 tRNA, and 3 sRNA genes were predicted. The core-pan gene evolutionary tree for the genus Gordonia showed that G. polyisoprenivorans R9 is clustered with G. polyisoprenivorans VH2 and G. polyisoprenivorans C, with 93.75% and 93.8% similarity to these two strains, respectively. Altogether, the three G. polyisoprenivorans strains contained 3890 core gene clusters. Strain R9 contained 785 specific gene clusters, while 501 and 474 specific gene clusters were identified in strains VH2 and C, respectively. Furthermore, whole genome analysis revealed the existence of the steroids and estrogens degradation pathway in the core genome of all three G. polyisoprenivorans strains, although the G. polyisoprenivorans R9 genome contained more specific estrogen and steroid degradation genes. In strain R9, 207 ABC transporters, 95 short-chain dehydrogenases (SDRs), 26 monooxygenases, 21 dioxygenases, 7 aromatic ring-hydroxylating dioxygenases, and 3 CoA esters were identified, and these are very important for estrogen and steroid transport, and degradation. The results of this study could enhance our understanding of the role of G. polyisoprenivorans R9 in estradiol and steroid degradation as well as evolution within the G. polyisoprenivorans species.


Assuntos
Actinobacteria/genética , Actinobacteria/metabolismo , Poluentes Ambientais/metabolismo , Estradiol/metabolismo , Esteroides/metabolismo , Actinobacteria/classificação , Animais , Composição de Bases , Biodegradação Ambiental , Disruptores Endócrinos/metabolismo , Estrogênios/metabolismo , Genoma Bacteriano , Humanos , Família Multigênica , Filogenia , Especificidade da Espécie
8.
Arch Toxicol ; 95(7): 2255-2261, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33837803

RESUMO

Since World War I, considerable amounts of warfare materials have been dumped at seas worldwide. After more than 70 years of resting on the seabed, reports suggest that the metal shells of these munitions are corroding, such that explosive chemicals leak out and distribute in the marine environment. Explosives such as TNT (2,4,6-trinitrotoluene) and its derivatives are known for their toxicity and carcinogenicity, thereby posing a threat to the marine environment. Toxicity studies suggest that chemical components of munitions are unlikely to cause acute toxicity to marine organisms. However, there is increasing evidence that they can have sublethal and chronic effects in aquatic biota, especially in organisms that live directly on the sea floor or in subsurface substrates. Moreover, munition-dumping sites could serve as nursery habitats for young biota species, demanding special emphasis on all kinds of developing juvenile marine animals. Unfortunately, these chemicals may also enter the marine food chain and directly affect human health upon consuming contaminated seafood. While uptake and accumulation of toxic munition compounds in marine seafood species such as mussels and fish have already been shown, a reliable risk assessment for the human seafood consumer and the marine ecosphere is lacking and has not been performed until now. In this review, we compile the first data and landmarks for a reliable risk assessment for humans who consume seafood contaminated with munition compounds. We hereby follow the general guidelines for a toxicological risk assessment of food as suggested by authorities.


Assuntos
Substâncias Explosivas , Trinitrotolueno , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Substâncias Explosivas/toxicidade , Peixes , Alimentos Marinhos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
9.
Arch Toxicol ; 94(12): 4043-4054, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33094350

RESUMO

Millions of tons of all kind of munitions, including mines, bombs and torpedoes have been dumped after World War II in the marine environment and do now pose a new threat to the seas worldwide. Beside the acute risk of unwanted detonation, there is a chronic risk of contamination, because the metal vessels corrode and the toxic and carcinogenic explosives (trinitrotoluene (TNT) and metabolites) leak into the environment. While the mechanism of toxicity and carcinogenicity of TNT and its derivatives occurs through its capability of inducing oxidative stress in the target biota, we had the idea if TNT can induce the gene expression of carbonyl reductase in blue mussels. Carbonyl reductases are members of the short-chain dehydrogenase/reductase (SDR) superfamily. They metabolize xenobiotics bearing carbonyl functions, but also endogenous signal molecules such as steroid hormones, prostaglandins, biogenic amines, as well as sugar and lipid peroxidation derived reactive carbonyls, the latter providing a defence mechanism against oxidative stress and reactive oxygen species (ROS). Here, we identified and cloned the gene coding for carbonyl reductase from the blue mussel Mytilus spp. by a bioinformatics approach. In both laboratory and field studies, we could show that TNT induces a strong and concentration-dependent induction of gene expression of carbonyl reductase in the blue mussel. Carbonyl reductase may thus serve as a biomarker for TNT exposure on a molecular level which is useful to detect TNT contaminations in the environment and to perform a risk assessment both for the ecosphere and the human seafood consumer.


Assuntos
Oxirredutases do Álcool/biossíntese , Bombas (Dispositivos Explosivos) , Monitoramento Ambiental , Substâncias Explosivas/toxicidade , Resíduos Perigosos , Mytilus edulis/efeitos dos fármacos , Trinitrotolueno/toxicidade , Poluentes Químicos da Água/toxicidade , Oxirredutases do Álcool/genética , Animais , Biologia Computacional , Relação Dose-Resposta a Droga , Biomarcadores Ambientais/genética , Indução Enzimática , Mytilus edulis/enzimologia , Mytilus edulis/genética , Oceanos e Mares , Medição de Risco , II Guerra Mundial
10.
Arch Toxicol ; 94(6): 1941-1953, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32303806

RESUMO

The seas worldwide are threatened by a "new" source of pollution: millions of tons of all kind of warfare material have been dumped intentionally after World War I and II, in addition to mine barriers, failed detonations as well as shot down military planes and sunken ship wrecks carrying munitions. For example, in the German parts of the North and Baltic Sea approximately 1.6 million metric tons of toxic conventional explosives (TNT and others) and more than 5000 metric tons of chemical weapons are present. Such unexploded ordnance (UXO) constitutes a direct risk of detonation with increased human access (fisheries, water sports, cable constructions, wind farms and pipelines). Moreover, after more than 70 years of resting on the seabed, the metal shells of these munitions items corrode, such that chemicals leak out and distribute in the marine environment. Explosive chemicals such as TNT and its derivatives are known for their toxicity and carcinogenicity. In order not to endanger today's shipping traffic or the installation of pipelines and offshore plants by uncontrolled explosions, controlled blast-in-place (BiP) operations of these dangerous relics is a common practice worldwide. However, blast-in-place methods of in situ munitions disposal often result in incomplete (low-order) detonation, leaving substantial quantities of the explosive material in the environment. In the present free field investigation, we placed mussels (Mytilus spp.) as a biomonitoring system in an area of the Baltic Sea where BiP operations took place and where, by visual inspections by scientific divers, smaller and larger pieces of munitions-related materials were scattered on the seafloor. After recovery, the mussels were transferred to our laboratory and analyzed for TNT and its derivatives via gas chromatography and mass spectroscopy. Our data unequivocally demonstrate that low-order BiP operations of dumped munitions in the sea lead to multiple increases in the concentration of TNT and its metabolites in the mussels when compared to similar studies at corroding but still encased mines. For this reason, we explicitly criticize BiP operations because of the resulting environmental hazards, which can ultimately even endanger human seafood consumers.


Assuntos
Explosões , Substâncias Explosivas/análise , Contaminação de Alimentos/análise , Mytilus edulis/química , Alimentos Marinhos/análise , Gerenciamento de Resíduos , Resíduos/análise , Poluentes Químicos da Água/análise , II Guerra Mundial , I Guerra Mundial , Animais , Monitoramento Biológico , Qualidade de Produtos para o Consumidor , Substâncias Explosivas/efeitos adversos , Humanos , Oceanos e Mares , Medição de Risco , Alimentos Marinhos/efeitos adversos , Resíduos/efeitos adversos , Poluentes Químicos da Água/efeitos adversos
11.
Int J Cancer ; 146(9): 2376-2382, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31583690

RESUMO

Smoking is indisputably linked to lung cancer, yet only a small fraction of smokers develops this disease. Although previously tobacco-derived carcinogens and enzyme polymorphisms have been identified to increase the risk for smokers, recent epidemiological data suggest even sex-specificity as a new and additional factor. Obviously, women have a higher risk to develop lung cancer upon smoking than men. Overall, the odds ratio to develop lung cancer was almost three times greater for women than for men, DNA adduct levels were higher among females than in males and mutations in the tumor suppressor gene p53 and the proto-oncogene K-RAS were more frequently found in women than in men. A growing number of studies suggest that the interaction between tobacco carcinogens and endogenous and exogenous sex steroids may be important. Women taking hormone replacement therapy (HRT) or oral contraceptives experienced to have an increased lung cancer incidence. Epidemiologic data on HRT show a significant association between both a younger median age at lung cancer diagnosis and a shorter median survival time. Another clue is the significantly higher number of lung cancer diagnosed women who are largely premenopausal in comparison to diagnosed men in the same age or women with shorter menstrual cycles. Finally, the Coronary Drug Project (men who received estrogen preparations to reduce future cardiac events) was stopped when increased lung cancer mortality was observed in the estrogen therapy group. The present review provides a short overview and discussion on lung cancer risk and the impact thereon of sex.


Assuntos
Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/etiologia , Carcinógenos/toxicidade , Feminino , Terapia de Reposição Hormonal/efeitos adversos , Humanos , Incidência , Neoplasias Pulmonares/patologia , Masculino , Proto-Oncogene Mas , Proto-Oncogenes/genética , Fatores de Risco , Fatores Sexuais , Estados Unidos/epidemiologia
12.
Chem Biol Interact ; 305: 156-162, 2019 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-30849340

RESUMO

In terms of drug disposal and metabolism SDR21C1 (carbonyl reductase 1; CBR1) exerts an assorted substrate spectrum among a large variety of clinically relevant substances. Additionally, this short-chain dehydrogenase/reductase is extensively expressed in most tissues of the human body, thus underpinning its role in xenobiotic metabolism. Reduction of the chemotherapeutic daunorubicin (DAUN) to daunorubicinol (DAUNol) is a prominent example of its metabolic properties in terms of chemoresistance and cardiotoxicity. The hop-derived prenylated chalcone xanthohumol (XN) and its physiological metabolites isoxanthohumol (IX) and 8-prenylnaringenin (8-PN) have previously been reported to inhibit other DAUN reducing reductases and dehydrogenases including AKR1B1 and AKR1B10. Also with regard to their effects by means of interacting with cancer-related molecular pathways, XN and related prenylated flavonoids in particular have been in the focus of recent studies. In this study, inhibitory properties of these substances were examined with CBR1-mediated 2,3-hexanedione and DAUN reduction. All substances tested in this study turned out to efficiently inhibit recombinant human CBR1 within a low micromolar to submicromolar range. Among the substances tested, 8-PN turned out to be the most effective inhibitor when using 2,3-hexanedione as a substrate (Ki(app) = 180 ±â€¯20 nM). Inhibition rates of recombinant CBR1-mediated DAUN reduction were somewhat weaker with IC50-values ranging from 11 to 20 µM. XN, IX and 8-PN also efficiently inhibited DAUN reduction by SW480 colon adenocarcinoma cytosol (IC50 = 3.71 ±â€¯0.26 µM with 8-PN as inhibitor). This study identifies prenylated inhibitors, which might potentially interact with endogenous CBR1-driven (de-)toxication systems.


Assuntos
Oxirredutases do Álcool/metabolismo , Flavanonas/química , Flavonoides/química , Propiofenonas/química , Xantonas/química , Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/genética , Linhagem Celular Tumoral , Chalconas/química , Daunorrubicina/química , Daunorrubicina/metabolismo , Flavanonas/metabolismo , Flavonoides/metabolismo , Hexanonas/química , Hexanonas/metabolismo , Humanos , Concentração Inibidora 50 , Cinética , Oxirredução , Propiofenonas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Xantonas/metabolismo
13.
Molecules ; 23(11)2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30469331

RESUMO

Hop-derived compounds have been subjected to numerous biomedical studies investigating their impact on a wide range of pathologies. Isomerised bitter acids (isoadhumulone, isocohumulone and isohumulone) from hops, used in the brewing process of beer, are known to inhibit members of the aldo-keto-reductase superfamily. Aldo-keto-reductase 1B10 (AKR1B10) is upregulated in various types of cancer and has been reported to promote carcinogenesis. Inhibition of AKR1B10 appears to be an attractive means to specifically treat RAS-dependent malignancies. However, the closely related reductases AKR1A1 and AKR1B1, which fulfil important roles in the detoxification of endogenous and xenobiotic carbonyl compounds oftentimes crossreact with inhibitors designed to target AKR1B10. Accordingly, there is an ongoing search for selective AKR1B10 inhibitors that do not interact with endogeneous AKR1A1 and AKR1B1-driven detoxification systems. In this study, unisomerised α-acids (adhumulone, cohumulone and n-humulone) were separated and tested for their inhibitory potential on AKR1A1, AKR1B1 and AKR1B10. Also AKR1B10-mediated farnesal reduction was effectively inhibited by α-acid congeners with Ki-values ranging from 16.79 ± 1.33 µM (adhumulone) to 3.94 ± 0.33 µM (n-humulone). Overall, α-acids showed a strong inhibition with selectivity (115⁻137 fold) for AKR1B10. The results presented herein characterise hop-derived α-acids as a promising basis for the development of novel and selective AKR1B10-inhibitors.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Cicloexanonas/farmacologia , Cicloexenos/farmacologia , Terpenos/farmacologia , Aldeído Redutase/metabolismo , Aldo-Ceto Redutases , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Farneseno Álcool/análogos & derivados , Farneseno Álcool/química , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Humulus/química
14.
FEBS J ; 285(15): 2869-2887, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29893480

RESUMO

Oxidative stress is a major source of reactive carbonyl compounds that can damage cellular macromolecules, leading to so-called carbonyl stress. Aside from endogenously formed carbonyls, including highly reactive short-chain aldehydes and diketones, air pollutants derived from diesel exhaust like 9,10-phenanthrenequinone (PQ) can amplify oxidative stress by redox cycling, causing tissue damage. Carbonyl reductases (CRs), which are inducible in response to ROS, represent a fundamental enzymatic defense mechanism against oxidative stress. While commonly two carbonyl reductases (CBR1 and CBR3) are found in mammalian genomes, invertebrate model organisms like Drosophila melanogaster express no CR but a functional homolog to human CBR1, termed sniffer. The microcrustacean Daphnia is an ideal model organism to investigate the function of CRs because of its unique equipment with even four copies of the CR gene (CR1, CR2, CR3, CR4) in addition to one sniffer gene. Cloning and catalytic characterization of two carbonyl reductases CR1 and CR3 from D. magna and D. pulex arenata revealed that both proteins reductively metabolize aromatic dicarbonyls (e.g., menadione, PQ) and aliphatic α-diketones (e.g., 2,3-hexanedione), while sugar-derived aldehydes (methylglyoxal, glyoxal) and lipid peroxidation products such as acrolein and butanal were poor substrates, indicating no physiological function in the metabolism of short-chain aldehydes. Treatment of D. magna with redox cyclers like menadione and the pesticide paraquat led to an upregulation of CR1 and CR3 mRNA, suggesting a role in oxidative stress defense. Further studies are needed to investigate their potential to serve as novel biomarkers for oxidative stress in Daphnia.


Assuntos
Oxirredutases do Álcool/metabolismo , Daphnia/efeitos dos fármacos , Daphnia/enzimologia , Acetilcisteína/farmacologia , Fatores Etários , Oxirredutases do Álcool/genética , Animais , Antioxidantes/farmacologia , Clonagem Molecular , Daphnia/genética , Biomarcadores Ambientais/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Inativação Metabólica/efeitos dos fármacos , Cinética , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Paraquat/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Tempo , Vitamina K 3/farmacologia
15.
J Enzyme Inhib Med Chem ; 33(1): 607-614, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29532688

RESUMO

Xanthohumol (XN), a prenylated chalcone unique to hops (Humulus lupulus) and two derived prenylflavanones, isoxanthohumol (IX) and 8-prenylnaringenin (8-PN) gained increasing attention as potential anti-diabetic and cancer preventive compounds. Two enzymes of the aldo-keto reductase (AKR) superfamily are notable pharmacological targets in cancer therapy (AKR1B10) and in the treatment of diabetic complications (AKR1B1). Our results show that XN, IX and 8-PN are potent uncompetitive, tight-binding inhibitors of human aldose reductase AKR1B1 (Ki = 15.08 µM, 0.34 µM, 0.71 µM) and of human AKR1B10 (Ki = 20.11 µM, 2.25 µM, 1.95 µM). The activity of the related enzyme AKR1A1 was left unaffected by all three compounds. This is the first time these three substances have been tested on AKRs. The results of this study may provide a basis for further quantitative structure?activity relationship models and promising scaffolds for future anti-diabetic or carcinopreventive drugs.


Assuntos
Aldo-Ceto Redutases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Flavanonas/farmacologia , Flavonoides/farmacologia , Humulus/química , Propiofenonas/farmacologia , Xantonas/farmacologia , Aldo-Ceto Redutases/metabolismo , Sítios de Ligação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Flavanonas/química , Flavonoides/química , Humanos , Estrutura Molecular , Propiofenonas/química , Relação Estrutura-Atividade , Xantonas/química
16.
FEBS J ; 285(2): 275-293, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29151266

RESUMO

The human dehydrogenase/reductase SDR family member 4 (DHRS4) is a tetrameric protein that is involved in the metabolism of several aromatic carbonyl compounds, steroids, and bile acids. The only invertebrate DHRS4 that has been characterized to date is that from the model organism Caenorhabditis elegans. We have previously cloned and initially characterized this protein that was recently annotated as DHRS4_CAEEL in the UniProtKB database. Crystallization and X-ray diffraction studies of the full-length DHRS4_CAEEL protein in complex with diacetyl revealed its tetrameric structure and showed that two subunits are connected via an intermolecular disulfide bridge that is formed by N-terminal cysteine residues (Cys5) of each protein chain, which increases the enzymatic activity. A more detailed biochemical and catalytic characterization shows that DHRS4_CAEEL shares some properties with human DHRS4 such as relatively low substrate affinities with aliphatic α-diketones and a preference for aromatic dicarbonyls such as isatin, with a 30-fold lower Km value compared with the human enzyme. Moreover, DHRS4_CAEEL is active with aliphatic aldehydes (e.g. hexanal), while human DHRS4 is not. Dehydrogenase activity with alcohols was only observed with aromatic alcohols. Protein thermal shift assay revealed a stabilizing effect of phosphate buffer that was accompanied by an increase in catalytic activity of more than two-fold. The study of DHRS4 homologs in simple lineages such as C. elegans may contribute to our understanding of the original function of this protein that has been shaped by evolutionary processes in the course of the development from invertebrates to higher mammalian species. DATABASE: Structural data are available in the PDB under the accession numbers 5OJG and 5OJI.


Assuntos
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/enzimologia , Carbonil Redutase (NADPH)/química , Animais , Catálise , Cristalografia por Raios X , Ditiotreitol/química , Humanos , Imidazóis/química , NADP/metabolismo , Oxirredução , Oxirredutases/química , Conformação Proteica , Cloreto de Sódio/química , Especificidade por Substrato
17.
Cancer Lett ; 405: 120-126, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28743530

RESUMO

Smoking women are probably at a higher risk to develop lung cancer than men. Different explanations exist for these findings, a gender-specific impairment of tobacco carcinogen metabolism being one of them. In this study, we examined the inhibition of NNK reduction to NNAL, the first and most important detoxication step of this tobacco-specific carcinogen. It is mediated by different carbonyl reductases of the SDR (CBR1 and 11ßHSD1) and AKR (AKR1B10, AKR1C1, AKR1C2 and AKR1C4) superfamilies. Inhibition constants of NNK reduction were determined with male (testosterone) and female (estradiol, progesterone) sex hormones and the contraceptives ethinylestradiol and drospirenone in A549 cells and with purified enzymes. Female sex hormones turned out to be stronger inhibitors than testosterone. The gestagen progesterone and its synthetic derivative drospirenone are the strongest inhibitors with Ki-values similar to hormone levels in pregnant women or women using hormonal contraceptives. Therefore, pregnancy or hormonal contraception may commit these women as high risk groups. The results of this study support the hypothesis that women bear a higher lung cancer risk when smoking because of female sex hormones acting as inhibitors of NNK detoxication.


Assuntos
Carcinógenos/metabolismo , Hormônios Esteroides Gonadais/farmacologia , Neoplasias Pulmonares/metabolismo , Nitrosaminas/metabolismo , Fumar/efeitos adversos , Feminino , Humanos , Fígado/efeitos dos fármacos , Masculino , Piridinas/metabolismo , Fatores Sexuais , Nicotiana/efeitos adversos , Células Tumorais Cultivadas
18.
Chem Biol Interact ; 276: 167-173, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28257955

RESUMO

Carbonyl reduction is an important metabolic pathway for endogenous and xenobiotic substances. The tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, nicotine-derived nitrosamine ketone) is classified as carcinogenic to humans (IARC, Group 1) and considered to play the most important role in tobacco-related lung carcinogenesis. Detoxification of NNK through carbonyl reduction is catalyzed by members of the AKR- and the SDR-superfamilies which include AKR1B10, AKR1C1, AKR1C2, AKR1C4, 11ß-HSD1 and CBR1. Because some reductases are also involved in steroid metabolism, five different hormones were tested for their inhibitory effect on NNK carbonyl reduction. Two of those hormones were estrogens (estradiol and ethinylestradiol), another two hormones belong to the gestagen group (progesterone and drospirenone) and the last tested hormone was an androgen (testosterone). Furthermore, one of the estrogens (ethinylestradiol) and one of the gestagens (drospirenone) are synthetic hormones, used as hormonal contraceptives. Five of six NNK reducing enzymes (AKR1B10, AKR1C1, AKR1C2, AKR1C4 and 11ß-HSD1) were significantly inhibited by the tested sex hormones. Only NNK reduction catalyzed by CBR1 was not significantly impaired. In the case of the other five reductases, gestagens had remarkably stronger inhibitory effects at a concentration of 25 µM (progesterone: 66-88% inhibition; drospirenone: 26-87% inhibition) in comparison to estrogens (estradiol: 17-51% inhibition; ethinylestradiol: 14-79% inhibition) and androgens (14-78% inhibition). Moreover, in most cases the synthetic hormones showed a greater ability to inhibit NNK reduction than the physiologic derivatives. These results demonstrate that male and female sex hormones have different inhibitory potentials, thus indicating that there is a varying detoxification capacity of NNK in men and women which could result in a different risk for developing lung cancer.


Assuntos
Aldo-Ceto Redutases/metabolismo , Hormônios Gonadais/metabolismo , Nitrosaminas/metabolismo , Redutases-Desidrogenases de Cadeia Curta/metabolismo , Aldo-Ceto Redutases/antagonistas & inibidores , Aldo-Ceto Redutases/genética , Androstenos/química , Androstenos/metabolismo , Carcinógenos/química , Carcinógenos/metabolismo , Estradiol/química , Estradiol/metabolismo , Hormônios Gonadais/química , Humanos , Inativação Metabólica , Fígado/enzimologia , Nitrosaminas/química , Progesterona/química , Progesterona/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Redutases-Desidrogenases de Cadeia Curta/antagonistas & inibidores , Redutases-Desidrogenases de Cadeia Curta/genética , Nicotiana/química , Nicotiana/metabolismo
19.
Toxicol Appl Pharmacol ; 293: 21-9, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26773812

RESUMO

The clinical application of anthracyclines, like daunorubicin and doxorubicin, is limited by two factors: dose-related cardiotoxicity and drug resistance. Both have been linked to reductive metabolism of the parent drug to their metabolites daunorubicinol and doxorubicinol, respectively. These metabolites show significantly less anti-neoplastic properties as their parent drugs and accumulate in cardiac tissue leading to chronic cardiotoxicity. Therefore, we aimed to identify novel and potent natural inhibitors for anthracycline reductases, which enhance the anticancer effect of anthracyclines by preventing the development of anthracycline resistance. Human enzymes responsible for the reductive metabolism of daunorubicin were tested for their sensitivity towards anthrachinones, in particular emodin and anthraflavic acid. Intense inhibition kinetic data for the most effective daunorubicin reductases, including IC50- and Ki-values, the mode of inhibition, as well as molecular docking, were compiled. Subsequently, a cytotoxicity profile and the ability of emodin to reverse daunorubicin resistance were determined using multiresistant A549 lung cancer and HepG2 liver cancer cells. Emodin potently inhibited the four main human daunorubicin reductases in vitro. Further, we could demonstrate that emodin is able to synergistically sensitize human cancer cells towards daunorubicin at clinically relevant concentrations. Therefore, emodin may yield the potential to enhance the therapeutic effectiveness of anthracyclines by preventing anthracycline resistance via inhibition of the anthracycline reductases. In symphony with its known pharmacological properties, emodin might be a compound of particular interest in the management of anthracycline chemotherapy efficacy and their adverse effects.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Daunorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Emodina/farmacologia , Oxirredutases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Antraquinonas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Simulação de Acoplamento Molecular , Oxirredutases/metabolismo
20.
Chem Biol Interact ; 234: 162-8, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25541467

RESUMO

Curcumin is a major component of the plant Curcuma longa L. It is traditionally used as a spice and coloring in foods and is an important ingredient in curry. Curcuminoids have anti-oxidant and anti-inflammatory properties and gained increasing attention as potential neuroprotective and cancer preventive compounds. In the present study, we report that curcumin is a potent tight-binding inhibitor of human carbonyl reductase 1 (CBR1, Ki=223 nM). Curcumin acts as a non-competitive inhibitor with respect to the substrate 2,3-hexandione as revealed by plotting IC50-values against various substrate concentrations and most likely as a competitive inhibitor with respect to NADPH. Molecular modeling supports the finding that curcumin occupies the cofactor binding site of CBR1. Interestingly, CBR1 is one of the most effective human reductases in converting the anthracycline anti-tumor drug daunorubicin to daunorubicinol. The secondary alcohol metabolite daunorubicinol has significantly reduced anti-tumor activity and shows increased cardiotoxicity, thereby limiting the clinical use of daunorubicin. Thus, inhibition of CBR1 may increase the efficacy of daunorubicin in cancer tissue and simultaneously decrease its cardiotoxicity. Western-blots demonstrated basal expression of CBR1 in several cell lines. Significantly less daunorubicin reduction was detected after incubating A549 cell lysates with increasing concentrations of curcumin (up to 60% less with 50 µM curcumin), suggesting a beneficial effect in the co-treatment of anthracycline anti-tumor drugs together with curcumin.


Assuntos
Aldeído Redutase/metabolismo , Curcumina/metabolismo , Oxirredutases do Álcool/metabolismo , Aldo-Ceto Redutases , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Daunorrubicina/análogos & derivados , Daunorrubicina/metabolismo , Humanos , NADP/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA