Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acc Chem Res ; 56(22): 3188-3197, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37904501

RESUMO

ConspectusDNA is the genetic matter of life composed of four major nucleotides which can be further furnished with biologically important covalent modifications. Among the variety of enzymes involved in DNA metabolism, AdoMet-dependent methyltransferases (MTases) combine the recognition of specific sequences and covalent methylation of a target nucleotide. The naturally transferred methyl groups play important roles in biological signaling, but they are poor physical reporters and largely resistant to chemical derivatization. Therefore, an obvious strategy to unlock the practical utility of the methyltransferase reactions is to enable the transfer of "prederivatized" (extended) versions of the methyl group.However, previous enzymatic studies of extended AdoMet analogs indicated that the transalkylation reactions are drastically impaired as the size of the carbon chain increases. In collaborative efforts, we proposed that, akin to enhanced SN2 reactivity of allylic and propargylic systems, addition of a π orbital next to the transferable carbon atom might confer the needed activation of the reaction. Indeed, we found that MTase-catalyzed transalkylations of DNA with cofactors containing a double or a triple C-C bond in the ß position occurred in a robust and sequence-specific manner. Altogether, this breakthrough approach named mTAG (methyltransferase-directed transfer of activated groups) has proven instrumental for targeted labeling of DNA and other types of biomolecules (using appropriate MTases) including RNA and proteins.Our further work focused on the propargylic cofactors and their reactions with DNA cytosine-5 MTases, a class of MTases common for both prokaryotes and eukaryotes. Here, we learned that the 4-X-but-2-yn-1-yl (X = polar group) cofactors suffered from a rapid loss of activity in aqueous buffers due to susceptibility of the triple bond to hydration. This problem was remedied by synthetically increasing the separation between X and the triple bond from one to three carbon units (6-X-hex-2-ynyl cofactors). To further optimize the transfer of the bulkier groups, we performed structure-guided engineering of the MTase cofactor pocket. Alanine replacements of two conserved residues conferred substantial improvements of the transalkylation activity with M.HhaI and three other engineered bacterial C5-MTases. Of particular interest were CpG-specific DNA MTases (M.SssI), which proved valuable tools for studies of mammalian methylomes and chemical probing of DNA function.Inspired by the successful repurposing of bacterial enzymes, we turned to more complex mammalian C5-MTases (Dnmt1, Dnmt3A, and Dnmt3B) and asked if they could ultimately lead to mTAG labeling inside mammalian cells. Our efforts to engineer mouse Dnmt1 produced a variant (Dnmt1*) that enabled efficient Dnmt1-directed deposition of 6-azide-hexynyl groups on DNA in vitro. CRISPR-Cas9 editing of the corresponding codons in the genomic Dnmt1 alleles established endogenous expression of Dnmt1* in mouse embryonic stem cells. To circumvent the poor cellular uptake of AdoMet and its analogs, we elaborated their efficient internalization by electroporation, which has finally enabled selective catalysis-dependent azide tagging of natural Dnmt1 targets in live mammalian cells. The deposited chemical groups were then exploited as "click" handles for reading adjoining sequences and precise genomic mapping of the methylation sites. These findings offer unprecedented inroads into studies of DNA methylation in a wide range of eukaryotic model systems.


Assuntos
Metiltransferases , S-Adenosilmetionina , Animais , Camundongos , Metiltransferases/metabolismo , S-Adenosilmetionina/química , Epigenoma , Azidas , DNA/química , Carbono , Mamíferos/genética , Mamíferos/metabolismo
2.
Curr Protoc ; 3(6): e799, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37327316

RESUMO

S-Adenosyl-L-methionine (AdoMet) is a ubiquitous methyl donor for a variety of biological methylation reactions catalyzed by methyltransferases (MTases). AdoMet analogs with extended propargylic chains replacing the sulfonium-bound methyl group can serve as surrogate cofactors for many DNA and RNA MTases, enabling covalent derivatization and subsequent labeling of their cognate target sites in DNA or RNA. Although AdoMet analogs with saturated aliphatic chains are less popular than propargylic ones, they can be useful for dedicated studies that require certain chemical derivatization. Here we describe synthetic procedures for the preparation of two AdoMet analogs, one with a transferable 6-azidohex-2-ynyl group (carrying an activating C≡C triple bond and a terminal azide functionality), and the other one with a transferable ethyl-2,2,2-d3 group (an isotope-labeled aliphatic moiety). Our synthetic approach is based on direct chemoselective alkylation of S-adenosyl-L-homocysteine at sulfur with a corresponding nosylate or triflate, respectively, under acidic conditions. We also describe synthetic routes to 6-azidohex-2-yn-1-ol and conversion of the alcohols to corresponding nosylate and triflate alkylators. Using these protocols, the synthetic AdoMet analogs can be prepared within 1 to 2 weeks. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of 6-azidohex-2-yn-1-ol Basic Protocol 2: Synthesis of 4-nitrobenzenesulfonate Basic Protocol 3: Synthesis of trifluoromethanesulfonates Basic Protocol 4: S-Alkylation of AdoHcy with sulfonates Basic Protocol 5: Purification and characterization of AdoMet analogs.


Assuntos
Metiltransferases , S-Adenosilmetionina , Metiltransferases/química , S-Adenosilmetionina/química , Metionina , RNA/química , DNA/química , Racemetionina
3.
iScience ; 23(12): 101833, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33305188

RESUMO

Photochemical transformations enable exquisite spatiotemporal control over biochemical processes; however, methods for reliable manipulations of biomolecules tagged with biocompatible photo-sensitive reporters are lacking. Here we created a high-affinity binder specific to a photolytically removable caging group. We utilized chemical modification or genetically encoded incorporation of noncanonical amino acids to produce proteins with photocaged cysteine or selenocysteine residues, which were used for raising a high-affinity monoclonal antibody against a small photoremovable tag, 4,5-dimethoxy-2-nitrobenzyl (DMNB) group. Employing the produced photocage-selective binder, we demonstrate selective detection and immunoprecipitation of a variety of DMNB-caged target proteins in complex biological mixtures. This combined orthogonal strategy permits photocage-selective capture and light-controlled traceless release of target proteins for a myriad of applications in nanoscale assays.

4.
Nucleic Acids Res ; 46(17): e104, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-29901763

RESUMO

S-adenosyl-L-methionine-dependent 2'-O-methylati-on of the 3'-terminal nucleotide plays important roles in biogenesis of eukaryotic small non-coding RNAs, such as siRNAs, miRNAs and Piwi-interacting RNAs (piRNAs). Here we demonstrate that, in contrast to Mg2+/Mn2+-dependent plant and bacterial homologues, the Drosophila DmHen1 and human HsHEN1 piRNA methyltransferases require cobalt cations for their enzymatic activity in vitro. We also show for the first time the capacity of the animal Hen1 to catalyse the transfer of a variety of extended chemical groups from synthetic analogues of the AdoMet cofactor onto a wide range (22-80 nt) of single-stranded RNAs permitting their 3'-terminal functionalization and labelling. Moreover, we provide evidence that deletion of a small C-terminal region of the DmHen1 protein further increases its modification efficiency and abolishes a modest 3'-terminal nucleotide bias observed for the full-length protein. Finally, we show that fluorophore-tagged ssRNA molecules are successfully detected in fluorescence resonance energy transfer assays both individually and in a total RNA mixture. The presented DmHen1-assisted RNA labelling provides a solid basis for developing novel chemo-enzymatic approaches for in vitro studies and in vivo monitoring of single-stranded RNA pools.


Assuntos
Região 3'-Flanqueadora , Proteínas de Drosophila/fisiologia , Metiltransferases/fisiologia , RNA/metabolismo , Coloração e Rotulagem/métodos , Região 3'-Flanqueadora/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Células HCT116 , Humanos , Metiltransferases/metabolismo , MicroRNAs/metabolismo , RNA/química , Processamento de Terminações 3' de RNA , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , RNA não Traduzido/química , RNA não Traduzido/metabolismo , Imagem Individual de Molécula/métodos
5.
Curr Protoc Nucleic Acid Chem ; 64: 1.36.1-1.36.13, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26967468

RESUMO

S-Adenosyl-L-methionine (AdoMet) is a ubiquitous methyl donor for a variety of biological methylation reactions catalyzed by methyltransferases (MTases). AdoMet analogs with extended propargylic chains replacing the sulfonium-bound methyl group can serve as surrogate cofactors for many DNA and RNA MTases enabling covalent deposition of these linear chains to their cognate targets sites in DNA or RNA. Here we describe synthetic procedures for the preparation of two representative examples of AdoMet analogs with a transferable hex-2-ynyl group carrying a terminal azide or amine functionality. Our approach is based on direct chemoselective alkylation of S-adenosyl-L-homocysteine at sulfur with corresponding nosylates under acidic conditions. We also describe synthetic routes to 6-substituted hex-2-yn-1-ols and their conversion to the corresponding nosylates. Using these protocols, synthetic AdoMet analogs can be prepared within 1 to 2 weeks.


Assuntos
Metilases de Modificação do DNA/química , DNA/química , RNA/química , S-Adenosilmetionina/síntese química , Alquilação , Espectroscopia de Prótons por Ressonância Magnética , S-Adenosilmetionina/química
6.
ACS Chem Biol ; 8(6): 1134-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23557731

RESUMO

Methyltransferases catalyze specific transfers of methyl groups from the ubiquitous cofactor S-adenosyl-l-methionine (AdoMet) to various nucleophilic positions in biopolymers like DNA, RNA, and proteins. We had previously described synthesis and application of AdoMet analogues carrying sulfonium-bound 4-substituted but-2-ynyl side chains for transfer by methyltransferases. Although useful in certain applications, these cofactor analogues exhibited short lifetimes in physiological buffers. Examination of the reaction kinetics and products showed that their fast inactivation followed a different pathway than observed for AdoMet and rather involved a pH-dependent addition of a water molecule to the side chain. This side reaction was eradicated by synthesis of a series of cofactor analogues in which the separation between an electronegative group and the triple bond was increased from one to three carbon units. The designed hex-2-ynyl moiety-based cofactor analogues with terminal amino, azide, or alkyne groups showed a markedly improved enzymatic transalkylation activity and proved well suitable for methyltransferase-directed sequence-specific labeling of DNA in vitro and in bacterial cell lysates.


Assuntos
DNA/análise , Metiltransferases/metabolismo , S-Adenosilmetionina/análogos & derivados , Química Click , DNA/metabolismo , S-Adenosilmetionina/metabolismo , Coloração e Rotulagem
8.
Nat Chem Biol ; 5(6): 400-2, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19430486

RESUMO

Targeted methylation of cytosine residues by S-adenosylmethionine-dependent DNA methyltransferases modulates gene expression in vertebrates. Here we show that cytosine-5-methyltransferases catalyze reversible covalent addition of exogenous aliphatic aldehydes to their target residues in DNA, thus yielding corresponding 5-hydroxyalkylcytosines. Such atypical enzymatic reactions with non-cofactor-like substrates open new ways for sequence-specific derivatization of DNA and demonstrate enzymatic exchange of 5-hydroxymethyl groups on cytosine in support of an oxidative mechanism of DNA demethylation.


Assuntos
Aldeídos/metabolismo , DNA-Citosina Metilases/metabolismo , DNA/metabolismo , Catálise , Citosina/metabolismo , Metilação de DNA , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA