Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 201: 114385, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945408

RESUMO

In the current "era of lipid carriers," numerous strategies have been developed to manufacture lipid nanoparticles (LNPs). Nevertheless, the potential impact of various preparation methods on the characteristics, use, and/or stability of these LNPs remains unclear. In this work, we attempted to compare the effects of three different preparation methods: microfluidics (MF), reverse phase evaporation (RV), and ouzo (OZ) on lipid-peptide NPs (LPNPs) as plasmid DNA delivery carriers. These LPNPs had the same components, namely DOTMA cationic lipid, DSPC, cholesterol, and protamine. Subsequently, we compared the LPNPs in terms of their physicochemical features, functionality as gene delivery vehicles in two distinct cell lines (NT2 and D1-MSCs), and finally, their storage stability over a six-month period. It was clear that all three LPNP formulations worked to deliver EGFP-pDNA while keeping cells alive, and their physicochemical stability was high for 6 months. However, the preparation technique had a significant impact on their physicochemical characteristics. The MF produced LPNPs with a lesser size, polydispersity index, and zeta potential than the other synthesis methods. Additionally, their DNA entrapment efficiency, cell viability, and functional stability profiles were generally superior. These findings provide new insights for comparing different manufacturing methods to create LPNPs with the desired characteristics for effective and safe gene delivery.


Assuntos
DNA , Técnicas de Transferência de Genes , Lipídeos , Microfluídica , Nanopartículas , Peptídeos , Plasmídeos , Nanopartículas/química , Plasmídeos/administração & dosagem , Humanos , Lipídeos/química , DNA/administração & dosagem , DNA/química , Microfluídica/métodos , Peptídeos/química , Linhagem Celular , Transfecção/métodos , Tamanho da Partícula , Sobrevivência Celular/efeitos dos fármacos
2.
Biotechnol Adv ; 72: 108350, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38537878

RESUMO

The extraordinary success that chimeric antigen receptor (CAR) T cell therapies have shown over the years on fighting hematological malignancies is evidenced by the six FDA-approved products present on the market. CAR T treatments have forever changed the way we understand cellular immunotherapies, as current research in the topic is expanding even outside the field of cancer with very promising results. Until now, virus-based strategies have been used for CAR T cell manufacturing. However, this methodology presents relevant limitations that need to be addressed prior to wide spreading this technology to other pathologies and in order to optimize current cancer treatments. Several approaches are being explored to overcome these challenges such as virus-free alternatives that additionally offer the possibility of developing transient CAR expression or in vivo T cell modification. In this review, we aim to spotlight a pivotal juncture in the history of medicine where a significant change in perspective is occurring. We review the current progress made on viral-based CAR T therapies as well as their limitations and we discuss the future outlook of virus-free CAR T strategies to overcome current challenges and achieve affordable immunotherapies for a wide variety of pathologies, including cancer.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Imunoterapia Adotiva , Neoplasias/terapia , Linfócitos T , Tecnologia
3.
Am J Nucl Med Mol Imaging ; 13(5): 225-229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023820

RESUMO

BACKGROUND: Children and young adults have a vast array of electronics at their fingertips. While it can provide endless hours of entertainment and education, we are also seeing a structural consequence. Children are using these devices with their head tilted down with poor posture resulting in increased stress on the skull from attached structures which can lead to a bone spur (exostosis) at the external occipital protuberance (EOP). While typically painless, it can progress to necessitate surgical intervention. OBJECTIVES: The purpose of this study is to understand the prevalence of exostosis at the EOP and how the finding can affect the nuclear medicine bone scan. MATERIALS AND METHODS: 43 pediatric patients who underwent a whole-body bone scan over a period of 1 year were included in the study (10-19 years old). Images were reviewed by 2 board-certified Nuclear Medicine physicians to assess for uptake midline in the occipital skull. Suspected cases were followed up with all available clinical and radiographic reports and images. RESULTS: Bone scan demonstrated an occipital focus of uptake in 7 (16%) of the 43 patients (5 males and 2 females with a mean age of 15 years; range 10-19). Of these, 5/7 (71%) were confirmed by additional imaging. CONCLUSION: The rapidly advancing technology is leading to increased screen time in children and young adults. Our study shows that 16% of the pediatric population imaged at our facility between the ages of 10-19 years have signs of exostosis at the EOP. It is particularly important for clinicians to be aware of this entity when reading bone scans to avoid false positive interpretations.

4.
Adv Exp Med Biol ; 1410: 127-143, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36525172

RESUMO

Stem cell-derived extracellular vesicles (SC-EVs) have remarkably drawn clinicians' attention in treating ocular diseases. As a paracrine factor of stem cells and an appealing alternative for off-the-shelf cell-free therapeutics, SC-EVs can be conveniently applied topically on the ocular surface or introduced to the retina via intravitreal injection, without increasing the risks of immunogenesis or oncogenesis. This chapter aims to assess the potential applications for EV, obtained from various types of stem cells, in myriad eye diseases (traumatic, inflammatory, degenerative, immunological, etc.). To the best of our knowledge, all relevant pre-clinical studies are summarized here. Furthermore, we highlight the up-to-date status of clinical trials in the same realm and emphasize where future research efforts should be directed. For a successful clinical translation, various drawbacks of EVs therapy should be overcome (e.g., contamination, infection, insufficient yield, etc.). Moreover, standardized, and scalable extraction, purification, and characterization protocols are highly suggested to determine the exosome quality before they are offered to patients with ocular disorders.


Assuntos
Exossomos , Vesículas Extracelulares , Oftalmopatias , Células-Tronco Mesenquimais , Humanos , Células-Tronco , Oftalmopatias/terapia
5.
Pharmaceutics ; 13(6)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200425

RESUMO

The cell-based approach in gene therapy arises as a promising strategy to provide safe, targeted, and efficient gene delivery. Owing to their unique features, as homing and tumor-tropism, mesenchymal stem cells (MSCs) have recently been introduced as an encouraging vehicle in gene therapy. Nevertheless, non-viral transfer of nucleic acids into MSCs remains limited due to various factors related to the main stakeholders of the process (e.g., nucleic acids, carriers, or cells). In this review, we have summarized the main types of nucleic acids used to transfect MSCs, the pros and cons, and applications of each. Then, we have emphasized on the most efficient lipid-based carriers for nucleic acids to MSCs, their main features, and some of their applications. While a myriad of studies have demonstrated the therapeutic potential for engineered MSCs therapy in various illnesses, optimization for clinical use is an ongoing challenge. On the way of improvement, genetically modified MSCs have been combined with various novel techniques and tools (e.g., exosomes, spheroids, 3D-Bioprinting, etc.,) aiming for more efficient and safe applications in biomedicine.

6.
Cells ; 11(1)2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-35011678

RESUMO

Glioblastoma (GB), an aggressive primary tumor of the central nervous system, represents about 60% of all adult primary brain tumors. It is notorious for its extremely low (~5%) 5-year survival rate which signals the unsatisfactory results of the standard protocol for GB therapy. This issue has become, over time, the impetus for the discipline of bringing novel therapeutics to the surface and challenging them so they can be improved. The cell-based approach in treating GB found its way to clinical trials thanks to a marvelous number of preclinical studies that probed various types of cells aiming to combat GB and increase the survival rate. In this review, we aimed to summarize and discuss the up-to-date preclinical studies that utilized stem cells or immune cells to treat GB. Likewise, we tried to summarize the most recent clinical trials using both cell categories to treat or prevent recurrence of GB in patients. As with any other therapeutics, cell-based therapy in GB is still hampered by many drawbacks. Therefore, we highlighted several novel techniques, such as the use of biomaterials, scaffolds, nanoparticles, or cells in the 3D context that may depict a promising future when combined with the cell-based approach.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Glioblastoma/terapia , Animais , Glioblastoma/mortalidade , Humanos , Camundongos , Análise de Sobrevida
7.
Adv Exp Med Biol ; 1312: 107-129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33159306

RESUMO

The biomedical applications of mesenchymal stem cells (MSCs) have gained expanding attention over the past three decades. MSCs are easily obtained from various tissue types (e.g. bone marrow, fat, cord blood, etc.), are capable of self-renewal, and could be induced to differentiate into several cell lineages for countless biomedical applications. In addition, when transplanted, MSCs are not detected by immune surveillance, thus do not lead to graft rejection. Moreover, they can home towards affected tissues and induce their therapeutic effect in a cell-base and/or a cell-free manner. These properties, and many others, have made MSCs appealing therapeutic cell candidates (for cell and/or gene therapy) in myriad clinical conditions. However, similar to any other therapeutic tool, MSCs still have their own limitations and grey areas that entail more research for better understanding and optimization. Herein, we present a brief overview of various pre-clinical/clinical applications of MSCs in regenerative medicine and discuss limitations and future challenges.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Linhagem da Célula , Sangue Fetal , Medicina Regenerativa
8.
Int J Pharm ; 552(1-2): 48-55, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30244145

RESUMO

Development of safe and efficient non-viral vectors to deliver DNA into the CNS represents a huge challenge to face many neurological disorders. We elaborated niosomes based on DOTMA cationic lipid, lycopene "helper" lipid and polysorbate 60 as non-ionic surfactants for gene delivery to the CNS. Niosomes, and their corresponding nioplexes obtained after the addition of the pCMS-EGFP plasmid, were characterized in terms of size, charge, morphology and capacity to condense, release and protect DNA. In vitro experiments were performed in NT2 cells to evaluate transfection efficiency, viability, cellular uptake and intracellular distribution. Additionally, transfection in primary cortex cells were performed prior to brain administration into rat cerebral cortex. Data obtained showed that nioplexes exhibited not only adequate physicochemical properties for gene delivery applications, but also relevant transfection efficiencies (17%), without hampering viability (90%). Interestingly, In vivo experiments depicted promising protein expression in both cortical glial cells and blood vessels.


Assuntos
Encéfalo/metabolismo , Técnicas de Transferência de Genes , Nanopartículas/administração & dosagem , Animais , Linhagem Celular Tumoral , Células Cultivadas , DNA/administração & dosagem , Proteínas de Fluorescência Verde/genética , Humanos , Lipossomos , Licopeno/administração & dosagem , Masculino , Neurônios/metabolismo , Plasmídeos , Polissorbatos/administração & dosagem , Compostos de Amônio Quaternário/administração & dosagem , Ratos Sprague-Dawley , Tensoativos/administração & dosagem
9.
Nanomedicine ; 14(2): 521-531, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29157978

RESUMO

Bone morphogenetic protein-7(BMP-7) plays a pivotal role in the transformation of mesenchymal stem cells (MSCs) into bone. However, its impact is hampered due to its short half-life. Therefore, gene therapy may be an interesting approach to deliver BMP-7 gene to D1-MSCs. In this manuscript we prepared and characterized niosomes based on cationic lipid 2,3-di(tetradecyloxy)propan-1-amine, combined with polysorbate 80 for gene delivery purposes. Niosomes were characterized and combined initially with pCMS-EGFP reporter plasmid, and later with pUNO1-hBMP-7 plasmid to evaluate osteogenesis differentiation. Additionally, specific blockers of most relevant endocytic pathways were used to evaluate the intracellular disposition of complexes. MSCs transfected with niosomes showed increased growth rate, enhanced alkaline phosphatase activity (ALP) and extracellular matrix deposition which suggested the formation of osteoblast-like cells. We concluded that hBMP-7-transfected MSCs could be considered not only as an effective delivery tool of hBMP-7, but also as proliferating and bone forming cells for bone regeneration.


Assuntos
Proteína Morfogenética Óssea 7/genética , Regeneração Óssea , Cátions/química , Terapia Genética , Lipossomos/administração & dosagem , Células-Tronco Mesenquimais/citologia , Plasmídeos/administração & dosagem , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Lipossomos/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Plasmídeos/química , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA