Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 3(2): 258-273, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33589843

RESUMO

The anorexigenic peptide glucagon-like peptide-1 (GLP-1) is secreted from gut enteroendocrine cells and brain preproglucagon (PPG) neurons, which, respectively, define the peripheral and central GLP-1 systems. PPG neurons in the nucleus tractus solitarii (NTS) are widely assumed to link the peripheral and central GLP-1 systems in a unified gut-brain satiation circuit. However, direct evidence for this hypothesis is lacking, and the necessary circuitry remains to be demonstrated. Here we show that PPGNTS neurons encode satiation in mice, consistent with vagal signalling of gastrointestinal distension. However, PPGNTS neurons predominantly receive vagal input from oxytocin-receptor-expressing vagal neurons, rather than those expressing GLP-1 receptors. PPGNTS neurons are not necessary for eating suppression by GLP-1 receptor agonists, and concurrent PPGNTS neuron activation suppresses eating more potently than semaglutide alone. We conclude that central and peripheral GLP-1 systems suppress eating via independent gut-brain circuits, providing a rationale for pharmacological activation of PPGNTS neurons in combination with GLP-1 receptor agonists as an obesity treatment strategy.


Assuntos
Sistema Nervoso Central/fisiologia , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Sistema Nervoso Periférico/fisiologia , Resposta de Saciedade/fisiologia , Animais , Ingestão de Alimentos , Feminino , Trato Gastrointestinal/inervação , Trato Gastrointestinal/fisiologia , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Peptídeos Semelhantes ao Glucagon/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Proglucagon/metabolismo , Receptores de Ocitocina/metabolismo , Nervo Vago/fisiologia
2.
Obesity (Silver Spring) ; 28(5): 942-952, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32237211

RESUMO

OBJECTIVE: Intermittent (INT) access to a high-fat diet (HFD) can induce excessive-intake phenotypes in rodents. This study hypothesized that impaired satiation responses contribute to elevated intake in an INT-HFD access model. METHODS: First, this study characterized the intake and meal patterns of female rats that were subjected to an INT HFD in which a 45% HFD was presented for 20 hours every fourth day. To examine nutrient-induced satiation, rats received intragastric infusions of saline or Ensure Plus prior to darkness-onset food access. A similar design was used to examine sensitivity to the satiating effect of amylin. This study then examined whether an INT HFD influences amylin-induced c-Fos in feeding-relevant brain areas. RESULTS: Upon INT HFD access, rats consumed meals of larger size. The anorexic response to intragastric Ensure infusion and exogenous amylin treatment was blunted in INT rats on both chow-only and INT-HFD days of the diet regimen, compared with chow-maintained and continuous-HFD rats. An INT HFD did not influence amylin-induced c-Fos in the area postrema, nucleus of the solitary tract, and lateral parabrachial nucleus. CONCLUSIONS: Impaired satiation responses, mediated in part by reduced sensitivity to amylin, may explain the elevated intake observed upon INT HFD access and may play a role in disorders of INT overconsumption, including binge eating.


Assuntos
Dieta Hiperlipídica/métodos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Nutrientes/metabolismo , Animais , Comportamento Alimentar/fisiologia , Feminino , Ratos , Ratos Endogâmicos WF
3.
Int J Eat Disord ; 53(6): 997-1001, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31976573

RESUMO

OBJECTIVE: This preliminary study explored whether differences in meal-stimulated insulin or amylin release are linked to altered ingestive behaviors in individuals with bulimia nervosa (BN) or purging disorder (PD). METHOD: Women with BN (n = 15), PD (n = 16), or no eating disorder (n = 18) underwent structured clinical interviews and assessments of gut hormone and subjective responses to a fixed test meal. Multilevel model analyses were used to explore whether gut hormone responses contribute to subjective responses to the test meal and whether these associations differed by group. RESULTS: Insulin and amylin levels significantly increased following the test meal. Women with PD showed greater insulin release compared to those with BN, but not controls. Multilevel models support significant group X insulin interactions predicting subjective ratings of nausea and urge to vomit, with a stronger association between higher insulin responses and higher nausea and urge to vomit in women with PD and BN. Amylin responses did not differ by group. CONCLUSION: Increased sensitivity to the effects of insulin on nausea and urge to vomit may be linked to purging in both PD and BN. Differences in postprandial insulin levels may be linked to purging behavior in the absence versus presence of binge eating.


Assuntos
Bulimia Nervosa/sangue , Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Vômito/sangue , Adulto , Bulimia Nervosa/diagnóstico , Feminino , Humanos , Adulto Jovem
4.
Horm Behav ; 93: 109-117, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28558993

RESUMO

Estrogens suppress feeding in part by enhancing the response to satiation signals. Glucagon-like peptide 1 (GLP-1) acts on receptor populations both peripherally and centrally to affect food intake. We hypothesized that modulation of the central GLP-1 system is one of the mechanisms underlying the effects of estrogens on feeding. We assessed the anorexic effect of 0, 1, and 10µg doses of GLP-1 administered into the lateral ventricle of bilaterally ovariectomized (OVX) female rats on a cyclic regimen of either 2µg ß-estradiol-3-benzoate (EB) or oil vehicle 30min prior to dark onset on the day following hormone treatment. Central GLP-1 treatment significantly suppressed food intake in EB-treated rats at both doses compared to vehicle, whereas only the 10µg GLP-1 dose was effective in oil-treated rats. To follow up, we examined whether physiologic-dose cyclic estradiol treatment influences GLP-1-induced c-Fos in feeding-relevant brain areas of OVX females. GLP-1 significantly increased c-Fos expression in the area postrema (AP) and nucleus of the solitary tract (NTS), and the presence of estrogens may be required for this effect in the paraventricular nucleus of the hypothalamus (PVN). Together, these data suggest that modulation of the central GLP-1 system may be one of the mechanisms by which estrogens suppress food intake, and highlight the PVN as a region of interest for future investigation.


Assuntos
Anorexia/induzido quimicamente , Regulação do Apetite/efeitos dos fármacos , Estradiol/farmacologia , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Animais , Anorexia/metabolismo , Anorexia/patologia , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Estradiol/análogos & derivados , Feminino , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/metabolismo
5.
Am J Physiol Regul Integr Comp Physiol ; 311(1): R124-32, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27194565

RESUMO

Hindbrain glucagon-like peptide 1 (GLP-1) neurons project to numerous forebrain areas, including the lateral septum (LS). Using a fluorescently labeled GLP-1 receptor (GLP-1R) agonist, Exendin 4 (Ex4), we demonstrated GLP-1 receptor binding throughout the rat LS. We examined the feeding effects of Ex4 and the GLP-1R antagonist Exendin (9-39) (Ex9) at doses subthreshold for effect when delivered to the lateral ventricle. Intra-LS Ex4 suppressed overnight chow and high-fat diet (HFD) intake, and Ex9 increased chow and HFD intake relative to vehicle. During 2-h tests, intra-LS Ex9 significantly increased 0.25 M sucrose and 4% corn oil. Ex4 can cause nausea, but intra-LS administration of Ex4 did not induce pica. Furthermore, intra-LS Ex4 had no effect on anxiety-like behavior in the elevated plus maze. We investigated the role of LS GLP-1R in motivation for food by examining operant responding for sucrose on a progressive ratio (PR) schedule, with and without a nutrient preload to maximize GLP-1 neuron activation. The preload strongly suppressed PR responding, but blockade of GLP-1R in the intermediate subdivision of the LS did not affect motivation for sucrose under either load condition. The ability of the nutrient load to suppress subsequent chow intake was significantly attenuated by intermediate LS Ex9 treatment. By contrast, blockade of GLP-1R in the dorsal subdivision of the LS increased both PR responding and overnight chow intake. Together, these studies suggest that endogenous activity of GLP-1R in the LS influence feeding, and dLS GLP-1Rs, in particular, play a role in motivation.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Septo do Cérebro/metabolismo , Animais , Ansiedade/psicologia , Condicionamento Operante/efeitos dos fármacos , Dieta Hiperlipídica , Exenatida , Alimentos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/antagonistas & inibidores , Injeções Intraventriculares , Masculino , Motivação/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Peptídeos/farmacologia , Pica/induzido quimicamente , Pica/psicologia , Ratos , Ratos Wistar , Peçonhas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA