Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732142

RESUMO

The high mortality rate among patients with acute myocardial infarction (AMI) is one of the main problems of modern cardiology. It is quite obvious that there is an urgent need to create more effective drugs for the treatment of AMI than those currently used in the clinic. Such drugs could be enzyme-resistant peptide analogs of glucagon-like peptide-1 (GLP-1). GLP-1 receptor (GLP1R) agonists can prevent ischemia/reperfusion (I/R) cardiac injury. In addition, chronic administration of GLP1R agonists can alleviate the development of adverse cardiac remodeling in myocardial infarction, hypertension, and diabetes mellitus. GLP1R agonists can protect the heart against oxidative stress and reduce proinflammatory cytokine (IL-1ß, TNF-α, IL-6, and MCP-1) expression in the myocardium. GLP1R stimulation inhibits apoptosis, necroptosis, pyroptosis, and ferroptosis of cardiomyocytes. The activation of the GLP1R augments autophagy and mitophagy in the myocardium. GLP1R agonists downregulate reactive species generation through the activation of Epac and the GLP1R/PI3K/Akt/survivin pathway. The GLP1R, kinases (PKCε, PKA, Akt, AMPK, PI3K, ERK1/2, mTOR, GSK-3ß, PKG, MEK1/2, and MKK3), enzymes (HO-1 and eNOS), transcription factors (STAT3, CREB, Nrf2, and FoxO3), KATP channel opening, and MPT pore closing are involved in the cardioprotective effect of GLP1R agonists.


Assuntos
Cardiotônicos , Receptor do Peptídeo Semelhante ao Glucagon 1 , Transdução de Sinais , Humanos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon
2.
Biomedicines ; 12(4)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38672075

RESUMO

Performing cardiac surgery under cardiopulmonary bypass (CPB) and circulatory arrest (CA) provokes the development of complications caused by tissue metabolism, microcirculatory disorders, and endogenous nitric oxide (NO) deficiency. This study aimed to investigate the potential mechanisms for systemic organoprotective effects of exogenous NO during CPB and CA based on the assessment of dynamic changes in glycocalyx degradation markers, deformation properties of erythrocytes, and tissue metabolism in the experiment. A single-center prospective randomized controlled study was conducted on sheep, n = 24, comprising four groups of six in each. In two groups, NO was delivered at a dose of 80 ppm during CPB ("CPB + NO" group) or CPB and CA ("CPB + CA + NO"). In the "CPB" and "CPB + CA" groups, NO supply was not carried out. NO therapy prevented the deterioration of erythrocyte deformability. It was associated with improved tissue metabolism, lower lactate levels, and higher ATP levels in myocardial and lung tissues. The degree of glycocalyx degradation and endothelial dysfunction, assessed by the concentration of heparan sulfate proteoglycan and asymmetric dimethylarginine, did not change when exogenous NO was supplied. Intraoperative delivery of NO provides systemic organoprotection, which results in reducing the damaging effects of CPB on erythrocyte deformability and maintaining normal functioning of tissue metabolism.

3.
Life Sci ; 347: 122617, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608835

RESUMO

BACKGROUND: Acute myocardial infarction (AMI) is one of the main causes of death. It is quite obvious that there is an urgent need to develop new approaches for treatment of AMI. OBJECTIVE: This review analyzes data on the role of platelets in the regulation of cardiac tolerance to ischemia/reperfusion (I/R). METHODS: It was performed a search of topical articles using PubMed databases. FINDINGS: Platelets activated by a cholesterol-enriched diet, thrombin, and myocardial ischemia exacerbate I/R injury of the heart. The P2Y12 receptor antagonists, remote ischemic postconditioning and conditioning alter the properties of platelets. Platelets acquire the ability to increase cardiac tolerance to I/R. Platelet-derived growth factors (PDGFs) increase tolerance of cardiomyocytes and endothelial cells to I/R. PDGF receptors (PDGFRs) were found in cardiomyocytes and endothelial cells. PDGFs decrease infarct size and partially abrogate adverse postinfarction remodeling. Protein kinase C, phosphoinositide 3-kinase, and Akt involved in the cytoprotective effect of PDGFs. Vascular endothelial growth factor increased cardiac tolerance to I/R and alleviated adverse postinfarction remodeling. The platelet-activating factor (PAF) receptor inhibitors increase cardiac tolerance to I/R in vivo. PAF enhances cardiac tolerance to I/R in vitro. It is possible that PAF receptor inhibitors could protect the heart by blocking PAF receptor localized outside the heart. PAF protects the heart through activation of PAF receptor localized in cardiomyocytes or endothelial cells. Reactive oxygen species and kinases are involved in the cardioprotective effect of PAF. CONCLUSION: Platelets play an important role in the regulation of cardiac tolerance to I/R.


Assuntos
Plaquetas , Traumatismo por Reperfusão Miocárdica , Fator de Ativação de Plaquetas , Fator de Crescimento Derivado de Plaquetas , Fator A de Crescimento do Endotélio Vascular , Humanos , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Plaquetas/metabolismo , Fator de Ativação de Plaquetas/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/prevenção & controle , Infarto do Miocárdio/patologia
4.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255971

RESUMO

The hospital mortality in patients with ST-segment elevation myocardial infarction (STEMI) is about 6% and has not decreased in recent years. The leading cause of death of these patients is ischemia/reperfusion (I/R) cardiac injury. It is quite obvious that there is an urgent need to create new drugs for the treatment of STEMI based on knowledge about the pathogenesis of I/R cardiac injury, in particular, based on knowledge about the molecular mechanism of ferroptosis. In this study, it was demonstrated that ferroptosis is involved in the development of I/R cardiac injury, antitumor drug-induced cardiomyopathy, diabetic cardiomyopathy, septic cardiomyopathy, and inflammation. There is indirect evidence that ferroptosis participates in stress-induced cardiac injury. The activation of AMPK, PKC, ERK1/2, PI3K, and Akt prevents myocardial ferroptosis. The inhibition of HO-1 alleviates myocardial ferroptosis. The roles of GSK-3ß and NOS in the regulation of ferroptosis require further study. The stimulation of Nrf2, STAT3 prevents ferroptosis. The activation of TLR4 and NF-κB promotes ferroptosis of cardiomyocytes. MiR-450b-5p and miR-210-3p can increase the tolerance of cardiomyocytes to hypoxia/reoxygenation through the inhibition of ferroptosis. Circ_0091761 RNA, miR-214-3p, miR-199a-5p, miR-208a/b, miR-375-3p, miR-26b-5p and miR-15a-5p can aggravate myocardial ferroptosis.


Assuntos
Cardiomiopatias Diabéticas , Ferroptose , Traumatismos Cardíacos , MicroRNAs , Traumatismo por Reperfusão , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Glicogênio Sintase Quinase 3 beta , Isquemia , Reperfusão , MicroRNAs/genética , Morte Celular , Miócitos Cardíacos
5.
Cells ; 12(12)2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37371092

RESUMO

Acute myocardial infarction (AMI) remains the leading cause of mortality in the world, highlighting an urgent need for the development of novel, more effective approaches for the treatment of AMI. Remote postconditioning (RPost) of the heart could be a useful approach. It was demonstrated that RPost triggers infarct size reduction, improves contractile function of the heart in reperfusion, mitigates apoptosis, and stimulates autophagy in animals with coronary artery occlusion and reperfusion. Endogenous opioid peptides and adenosine could be involved in RPost. It was found that kinases and NO-synthase participate in RPost. KATP channels, MPT pore, and STAT3 could be hypothetical end-effectors of RPost. Metabolic syndrome and old age abolish the cardioprotective effect of RPost in rats. The data on the efficacy of RPost in clinical practice are inconsistent. These data are discussed in the review.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Infarto do Miocárdio/metabolismo , Coração , Transdução de Sinais
6.
Fundam Clin Pharmacol ; 37(6): 1020-1049, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37218378

RESUMO

BACKGROUND: The use of percutaneous coronary intervention (PCI) in patients with ST-segment elevation myocardial infarction (STEMI) is associated with a mortality rate of 5%-7%. It is clear that there is an urgent need to develop new drugs that can effectively prevent cardiac reperfusion injury. ATP-sensitive K+ (KATP ) channel openers (KCOs) can be classified as such drugs. RESULTS: KCOs prevent irreversible ischemia and reperfusion injury of the heart. KATP channel opening promotes inhibition of apoptosis, necroptosis, pyroptosis, and stimulation of autophagy. KCOs prevent the development of cardiac adverse remodeling and improve cardiac contractility in reperfusion. KCOs exhibit antiarrhythmic properties and prevent the appearance of the no-reflow phenomenon in animals with coronary artery occlusion and reperfusion. Diabetes mellitus and a cholesterol-enriched diet abolish the cardioprotective effect of KCOs. Nicorandil, a KCO, attenuates major adverse cardiovascular event and the no-reflow phenomenon, reduces infarct size, and decreases the incidence of ventricular arrhythmias in patients with acute myocardial infarction. CONCLUSION: The cardioprotective effect of KCOs is mediated by the opening of mitochondrial KATP (mitoKATP ) and sarcolemmal KATP (sarcKATP ) channels, triggered free radicals' production, and kinase activation.


Assuntos
Traumatismo por Reperfusão Miocárdica , Fenômeno de não Refluxo , Intervenção Coronária Percutânea , Humanos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Apoptose , Reperfusão , Trifosfato de Adenosina , Canais KATP
7.
Korean Circ J ; 52(10): 737-754, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36217596

RESUMO

Ischemic and reperfusion injuries of the heart underlie the pathogenesis of acute myocardial infarction (AMI) and sudden cardiac death. The mortality rate is still high and is 5-7% in patients with ST-segment elevation myocardial infarction. The review is devoted to pharmacological approaches to limitation of ischemic and reperfusion injuries of the heart. The article analyzes experimental evidence and the clinical data on the effects of P2Y12 receptor antagonists on the heart's tolerance to ischemia/reperfusion in animals with coronary artery occlusion and reperfusion and also in patients with AMI. Chronic administration of ticagrelor prevented adverse remodeling of the heart. There is evidence that sphingosine-1-phosphate is the molecule that mediates the infarct-reducing effect of P2Y12 receptor antagonists. It was discussed a role of adenosine in the cardioprotective effect of ticagrelor.

8.
Cells ; 11(19)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36230894

RESUMO

The role of microparticles (MPs) and cold in high altitude pulmonary hypertension (HAPH) remains unexplored. We investigated the impact of long-term cold exposure on the pulmonary circulation in lowlanders and high-altitude natives and the role of MPs. Pulmonary hemodynamics were evaluated using Doppler echocardiography at the end of the colder and warmer seasons. We further examined the miRNA content of MPs isolated from the study participants and studied their effects on human pulmonary artery smooth muscle (hPASMCs) and endothelial cells (hPAECs). Long-term exposure to cold environment was associated with an enhanced pulmonary artery pressure in highlanders. Plasma levels of CD62E-positive and CD68-positive MPs increased in response to cold in lowlanders and HAPH highlanders. The miRNA-210 expression contained in MPs differentially changed in response to cold in lowlanders and highlanders. MPs isolated from lowlanders and highlanders increased proliferation and reduced apoptosis of hPASMCs. Further, MPs isolated from warm-exposed HAPH highlanders and cold-exposed highlanders exerted the most pronounced effects on VEGF expression in hPAECs. We demonstrated that prolonged exposure to cold is associated with elevated pulmonary artery pressures, which are most pronounced in high-altitude residents. Further, the numbers of circulating MPs are differentially increased in lowlanders and HAPH highlanders during the colder season.


Assuntos
Hipertensão Pulmonar , MicroRNAs , Altitude , Doença da Altitude , Células Endoteliais , Humanos , Estações do Ano , Fator A de Crescimento do Endotélio Vascular
9.
Apoptosis ; 27(9-10): 697-719, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35986803

RESUMO

In the last 10 years, mortality from acute myocardial infarction (AMI) has not significantly decreased. This situation is associated with the absence in clinical practice of highly effective drugs capable of preventing the occurrence of reperfusion injury of the heart. Necroptosis inhibitors may become prototypes for the creation of highly effective drugs that increase cardiac tolerance to ischemic/reperfusion (I/R) and reduce the mortality rate in patients with AMI. Necroptosis is involved in I/R cardiac injury and inhibition of RIPK1 or RIPK3 contributes to an increase in cardiac tolerance to I/R. Necroptosis could also be involved in the development of adverse remodeling of the heart. It is unclear whether pre- and postconditioning could inhibit necroptosis of cardiomyocytes and endothelial cells. The role of necroptosis in coronary microvascular obstruction and the no-reflow phenomenon also needs to be studied. MicroRNAs and LncRNAs can regulate necroptotic cell death. Ca2+ overload and reactive oxygen species could be the triggers of necroptosis. Activation of kinases (p38, JNK1, Akt, and mTOR) could promote necroptotic cell death. The interaction of necroptosis, apoptosis, autophagy, ferroptosis, and pyroptosis is discussed. The water-soluble necroptosis inhibitors may be highly effective drugs for treatment of AMI or stroke. It is possible that microRNAs may become the basis for creating drugs for treatment of diseases triggered by I/R of organs.


Assuntos
MicroRNAs , Infarto do Miocárdio , RNA Longo não Codificante , Apoptose , Células Endoteliais/metabolismo , Humanos , MicroRNAs/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Necroptose , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Reperfusão , Serina-Treonina Quinases TOR/metabolismo , Água/metabolismo
10.
Cells ; 10(5)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067674

RESUMO

The cAMP analogue 8-Br-cAMP-AM (8-Br) confers marked protection against global ischaemia/reperfusion of isolated perfused heart. We tested the hypothesis that 8-Br is also protective under clinically relevant conditions (regional ischaemia) when applied either before ischemia or at the beginning of reperfusion, and this effect is associated with the mitochondrial permeability transition pore (MPTP). 8-Br (10 µM) was administered to Langendorff-perfused rat hearts for 5 min either before or at the end of 30 min regional ischaemia. Ca2+-induced mitochondria swelling (a measure of MPTP opening) and binding of hexokinase II (HKII) to mitochondria were assessed following the drug treatment at preischaemia. Haemodynamic function and ventricular arrhythmias were monitored during ischaemia and 2 h reperfusion. Infarct size was evaluated at the end of reperfusion. 8-Br administered before ischaemia attenuated ventricular arrhythmias, improved haemodynamic function, and reduced infarct size during ischaemia/reperfusion. Application of 8-Br at the end of ischaemia protected the heart during reperfusion. 8-Br promoted binding of HKII to the mitochondria and reduced Ca2+-induced mitochondria swelling. Thus, 8-Br protects the heart when administered before regional ischaemia or at the beginning of reperfusion. This effect is associated with inhibition of MPTP via binding of HKII to mitochondria, which may underlie the protective mechanism.


Assuntos
8-Bromo Monofosfato de Adenosina Cíclica/administração & dosagem , Fármacos Cardiovasculares/administração & dosagem , Mitocôndrias Cardíacas/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , 8-Bromo Monofosfato de Adenosina Cíclica/análogos & derivados , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Esquema de Medicação , Hemodinâmica/efeitos dos fármacos , Hexoquinase/metabolismo , Preparação de Coração Isolado , Masculino , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Dilatação Mitocondrial/efeitos dos fármacos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos Wistar , Transdução de Sinais , Função Ventricular Esquerda/efeitos dos fármacos
11.
Curr Cardiol Rev ; 17(2): 188-203, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31995013

RESUMO

The purpose of the review is the analysis of clinical and experimental data on the etiology and pathogenesis of takotsubo syndrome (TS). TS is characterized by contractile dysfunction, which usually affects the apical region of the heart without obstruction of coronary artery, moderate increase in myocardial necrosis markers, prolonged QTc interval (in 50% of patients), sometimes elevation of ST segment (in 19% of patients), increase N-Terminal Pro-B-Type Natriuretic Peptide level, microvascular dysfunction, sometimes spasm of the epicardial coronary arteries (in 10% of patients), myocardial edema, and life-threatening ventricular arrhythmias (in 11% of patients). Stress cardiomyopathy is a rare disease, it is observed in 0.6 - 2.5% of patients with acute coronary syndrome. The occurrence of takotsubo syndrome is 9 times higher in women, who are aged 60-70 years old, than in men. The hospital mortality among patients with TS corresponds to 3.5% - 12%. Physical or emotional stress do not precede disease in all patients with TS. Most of patients with TS have neurological or mental illnesses. The level of catecholamines is increased in patients with TS, therefore, the occurrence of TS is associated with excessive activation of the adrenergic system. The negative inotropic effect of catecholamines is associated with the activation of ß2 adrenergic receptors. An important role of the adrenergic system in the pathogenesis of TS is confirmed by studies which were performed using 125I-metaiodobenzylguanidine (125I -MIBG). TS causes edema and inflammation of the myocardium. The inflammatory response in TS is systemic. TS causes impaired coronary microcirculation and reduces coronary reserve. There is a reason to believe that an increase in blood viscosity may play an important role in the pathogenesis of microcirculatory dysfunction in patients with TS. Epicardial coronary artery spasm is not obligatory for the occurrence of TS. Cortisol, endothelin-1 and microRNAs are challengers for the role of TS triggers. A decrease in estrogen levels is a factor contributing to the onset of TS. The central nervous system appears to play an important role in the pathogenesis of TS.


Assuntos
Cardiomiopatia de Takotsubo , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cardiomiopatia de Takotsubo/diagnóstico , Cardiomiopatia de Takotsubo/etiologia , Cardiomiopatia de Takotsubo/fisiopatologia
12.
Eur J Pharmacol ; 883: 173380, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32693098

RESUMO

Remote ischemic preconditioning (RIPC) is an intrinsic protective phenomenon in which 3 to 4 interspersed cycles of non-fatal regional ischemia followed by reperfusion to the remote tissues protect the vital organs including brain, heart and kidney against sustained ischemia-reperfusion-induced injury. There is growing preclinical evidence supporting the usefulness of RIPC in eliciting neuroprotection against focal and global cerebral ischemia-reperfusion injury. Scientists have explored the involvement of HIF-1α, oxidative stress, apoptotic pathway, Lcn-2, platelets-derived microparticles, splenic response, adenosine A1 receptors, adenosine monophosphate activated protein kinase and neurogenic pathway in mediating RIPC-induced neuroprotection. The present review discusses the early and late phases of neuroprotection induced by RIPC against cerebral ischemic injury in animals along with the various possible mechanisms.


Assuntos
Encéfalo/irrigação sanguínea , Circulação Cerebrovascular , Transtornos Cerebrovasculares/prevenção & controle , Precondicionamento Isquêmico , Traumatismo por Reperfusão/prevenção & controle , Animais , Apoptose , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Transtornos Cerebrovasculares/metabolismo , Transtornos Cerebrovasculares/patologia , Transtornos Cerebrovasculares/fisiopatologia , Humanos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Transdução de Sinais , Fatores de Tempo
13.
Fundam Clin Pharmacol ; 34(3): 336-344, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31797451

RESUMO

Preconditioning is a well-documented strategy that induces hepatic protection, renal protection, cardioprotection, and neuroprotection but its mechanism still remains to be elucidated. Hence, the present study investigated the protective mechanism underlying pain attenuating effects of vincristine-preconditioning in chemotherapeutic agent-induced neuropathic pain. Neuropathic pain was induced by administration of vincristine (50 µg/kg, i.p.) for 10 days in rats. Vincristine-preconditioning was induced by administration of vincristine (2, 5, and 10 µg/kg, i.p) for 5 days before administration of pain-inducing dose of vincristine (50 µg/kg, i.p.). Vincristine-preconditioning (10 µg/kg, i.p) for 5 days significantly reduced vincristine (50 µg/kg, i.p.) induced pain-related behaviors including paw cold allodynia, mechanical hyperalgesia, and heat hyperalgesia. However, vincristine (2 and 5 µg/kg, i.p) did not significantly ameliorate the vincristine (50 µg/kg, i.p.) induced neuropathic pain in rats. Furthermore, to explore the involvement of calcium channels in pain attenuating mechanism of vincristine-preconditioning, T-type calcium channel blocker, ethosuximide (100 and 200 mg/kg, i.p.) and L-type calcium channel blocker, amlodipine (5 and 10 mg/kg, i.p.) were used. Pretreatment with T-type calcium channel blocker, ethosuximide significantly abolished vincristine-preconditioning-induced protective effect. However, pretreatment with L-type calcium channel blocker, amlodipine did not alter vincristine-preconditioning-induced pain-related behaviors. This indicates that vincristine-preconditioning has protective effect on pain-related parameters due to opening of calcium channels, particularly T-type calcium channels that lead to entry of small magnitude of intracellular calcium through these channels and prevent the deleterious effects of high-dose vincristine.


Assuntos
Antineoplásicos/efeitos adversos , Canais de Cálcio Tipo T/metabolismo , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Vincristina/farmacologia , Anlodipino/farmacologia , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Etossuximida/farmacocinética , Feminino , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Masculino , Neuralgia/metabolismo , Ratos , Ratos Wistar
14.
J Cardiovasc Pharmacol Ther ; 24(5): 403-421, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31035796

RESUMO

A humoral mechanism of cardioprotection by remote ischemic preconditioning (RIP) has been clearly demonstrated in various models of ischemia-reperfusion including upper and lower extremities, liver, and the mesenteric and renal arteries. A wide range of humoral factors for RIP have been proposed including hydrophobic peptides, opioid peptides, adenosine, prostanoids, endovanilloids, endocannabinoids, calcitonin gene-related peptide, leukotrienes, noradrenaline, adrenomedullin, erythropoietin, apolipoprotein, A-I glucagon-like peptide-1, interleukin 10, stromal cell-derived factor 1, and microRNAs. Virtually, all of the components of ischemic preconditioning's signaling pathway such as nitric oxide synthase, protein kinase C, redox signaling, PI3-kinase/Akt, glycogen synthase kinase ß, ERK1/2, mitoKATP channels, Connexin 43, and STAT were all found to play a role. The signaling pattern also depends on which remote vascular bed was subjected to ischemia and on the time between applying the rip and myocardial ischemia occurs. Because there is convincing evidence for many seemingly diverse humoral components in RIP, the most likely explanation is that the overall mechanism is complex like that seen in ischemic preconditioning where multiple components are both in series and in parallel and interact with each other. Inhibition of any single component in the right circumstance may block the resulting protective effect, and selectively activating that component may trigger the protection. Identifying the humoral factors responsible for RIP might be useful in developing drugs that confer RIP's protection in a more comfortable and reliable manner.


Assuntos
Precondicionamento Isquêmico , Infarto do Miocárdio/prevenção & controle , Miocárdio/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Transdução de Sinais , Animais , Humanos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/patologia , Fluxo Sanguíneo Regional , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Resultado do Tratamento
15.
Curr Cardiol Rev ; 15(3): 177-187, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30813880

RESUMO

The hypothetical trigger of remote postconditioning (RPost) of the heart is the highmolecular weight hydrophobic peptide(s). Nitric oxide and adenosine serve as intermediaries between the peptide and intracellular structures. The role of the autonomic nervous system in RPost requires further study. In signaling mechanism RPost, kinases are involved: protein kinase C, PI3, Akt, JAK. The hypothetical end effector of RPost is aldehyde dehydrogenase-2, the transcription factors STAT, Nrf2, and also the BKCa channel.


Assuntos
Coração/fisiopatologia , Isquemia/fisiopatologia , Pós-Condicionamento Isquêmico/métodos , Miocárdio/metabolismo , Feminino , Humanos , Masculino , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/patologia , Transdução de Sinais
16.
Cell Physiol Biochem ; 50(5): 1891-1902, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30396162

RESUMO

BACKGROUND/AIMS: Myocardial ischemia/reperfusion (I/R) or hypoxia/reoxygenation (H/R) injury is always characterized by Ca2+ overload, energy metabolism disorder and necrocytosis of cardiomyocytes. We showed previously that chronic intermittent hypobaric hypoxia (CIHH) improves cardiac function during I/R through improving cardiac glucose metabolism. However, the underlying cellular and molecular mechanisms of CIHH treatment improving energy metabolism in cardiomyocytes are still unclear. In this study, we determined whether and how CIHH protects cardiomyocytes from Ca2+ overload and necrocytosis through energy regulating pathway. METHODS: Adult male Sprague-Dawley rats were randomly divided into two groups: control (CON) and CIHH group. CIHH rats received a hypobaric hypoxia simulating 5,000-m altitude for 28 days, 6 hours each day, in hypobaric chamber. Rat ventricular myocytes were obtained by enzymatic dissociation. The intracellular calcium concentration ([Ca2+]i) and cTnI protein expression were used to evaluate the degree of cardiomyocytes injury during and after H/R. The mRNA and protein expressions involved in cardiac energy metabolism were determined using quantitative PCR and Western blot techniques. PGC-1α siRNA adenovirus transfection was used to knock down PGC-1α gene expression of cardiomyocytes to determine the effect of PGC-1α in the energy regulating pathway. RESULTS: H/R increased [Ca2+]i and cTnI protein expression in cardiomyocytes. CIHH treatment decreased [Ca2+]i (p< 0.01) and cTnI protein expression (p< 0.01) in cardiomyocytes after H/R. Both mRNA and protein expression of PGC-1α increased after CIHH treatment, which was reversed by PGC-1α siRNA adenovirus transfection. Furthermore, CIHH treatment increased the expression of HIF-1α, AMPK and p-AMPK in cardiomyocytes, and pretreatment with AMPK inhibitor dorsomorphin abolished the enhancement of PGC-1α protein expression in cardiomyocytes by CIHH (p< 0.01). In addition, PGC-1α knock down also abolished the increased protein level of GLUT4 (p< 0.01) and decreased the protein level of CPT-1b (p< 0.05) in cardiomyocytes by CIHH treatment. CONCLUSION: CIHH treatment could reduce the calcium overload and H/R injury in cardiomyocytes by up-regulating the expression of PGC-1α and regulating the energy metabolism of glucose and lipid. The HIF-1α-AMPK signaling pathway might be involved in the process.


Assuntos
Miócitos Cardíacos/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Cálcio/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Hipóxia Celular/genética , Células Cultivadas , Transportador de Glucose Tipo 4/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/antagonistas & inibidores , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Pirazóis/farmacologia , Pirimidinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Troponina I/metabolismo , Regulação para Cima/efeitos dos fármacos
17.
Cardiovasc Ther ; 36(3): e12328, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29604187

RESUMO

BACKGROUND: Adenosine is a breakdown product of adenosine triphosphate and plays an important role in pharmacological preconditioning. The cardioprotective effects of adenosine preconditioning are well established. However, the possible mechanisms need to be explored. AIM: This study was aimed to investigate the possible mechanisms involved in adenosine preconditioning-induced cardioprotection in rats. METHODS: Rat heart was isolated and perfused on Langendorff apparatus. Global ischemia for 30 minutes followed by reperfusion for 120 minutes was employed to produce myocardial injury. Myocardial injury was assessed by measuring myocardial infarct size, release of lactate dehydrogenase (LDH) and creatine kinase (CK) in the coronary effluent and hemodynamic parameters including left ventricular developed pressure (LVDP), dp/dtmax, and dp/dtmin . Serum nitrite levels were measured as an index of nitric oxide release in blood. RESULTS: Adenosine (4 mg/kg) preconditioning significantly decreased ischemia-reperfusion-induced increase in LDH, CK release, infarct size, improved LVDP, dp/dtmax and dp/dtmin, and increased serum nitrite levels. Pretreatment with L-NAME, a specific NOS inhibitor, (5 mg/kg) and montelukast, leukotriene receptor antagonist, (10 mg/kg) significantly abrogated the cardioprotective effect of adenosine preconditioning. However, seratrodast, thromboxane A2 antagonist, (15 mg/kg) had no effect on adenosine-induced cardioprotection. Sodium nitroprusside (SNP) preconditioning also produced cardioprotective effects. However, caffeine (20 mg/kg) (adenosine receptor blocker) and seratrodast (15 mg/kg) had no effect on SNP-induced cardioprotection. Administration of montelukast abrogated the cardioprotective effects of SNP preconditioning-induced cardioprotection. CONCLUSION: Adenosine preconditioning may increase the release of nitric oxide, which in turn may increase the release of cysteinyl leukotrienes to confer cardioprotection.


Assuntos
Adenosina/uso terapêutico , Cardiotônicos/uso terapêutico , Precondicionamento Isquêmico Miocárdico , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Estimulantes do Sistema Nervoso Central/uso terapêutico , Creatina Quinase/análise , Interações Medicamentosas , Técnicas In Vitro , Preparação de Coração Isolado , L-Lactato Desidrogenase/análise , Antagonistas de Leucotrienos/uso terapêutico , Masculino , Infarto do Miocárdio/patologia , Infarto do Miocárdio/prevenção & controle , Isquemia Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Óxido Nítrico/sangue , Óxido Nítrico Sintase/antagonistas & inibidores , Ratos , Ratos Wistar , Função Ventricular Esquerda
18.
J Cardiovasc Pharmacol Ther ; 21(3): 262-72, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26487546

RESUMO

Cannabinoids can mimic the infarct-reducing effect of early ischemic preconditioning, delayed ischemic preconditioning, and ischemic postconditioning against myocardial ischemia/reperfusion. They do this primarily through both CB1 and CB2 receptors. Cannabinoids are also involved in remote preconditioning of the heart. The cannabinoid receptor ligands also exhibit an antiapoptotic effect during ischemia/reperfusion of the heart. The acute cardioprotective effect of cannabinoids is mediated by activation of protein kinase C, extracellular signal-regulated kinase, and p38 kinase. The delayed cardioprotective effect of cannabinoid anandamide is mediated via stimulation of phosphatidylinositol-3-kinase-Akt signaling pathway and enhancement of heat shock protein 72 expression. The delayed cardioprotective effect of another cannabinoid, Δ9-tetrahydrocannabinol, is associated with augmentation of nitric oxide (NO) synthase expression, but data on the involvement of NO synthase in the acute cardioprotective effect of cannabinoids are contradictory. The adenosine triphosphate-sensitive K(+)channel is involved in the synthetic cannabinoid HU-210-induced cardiac resistance to ischemia/reperfusion injury. Cannabinoids inhibit Na(+)/Ca(2+)exchange via peripheral cannabinoid receptor (CB2) activation that may also be related to the antiapoptotic and cardioprotective effects of cannabinoids. The cannabinoid receptor agonists should be considered as prospective group of compounds for creation of drugs that are able to protect the heart against ischemia-reperfusion injury in the clinical setting.


Assuntos
Agonistas de Receptores de Canabinoides/uso terapêutico , Fármacos Cardiovasculares/uso terapêutico , Desenho de Fármacos , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas , Animais , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Humanos , Ligantes , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Phytother Res ; 29(4): 599-606, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25604645

RESUMO

Myocardial ischemia/reperfusion (MI/R) injury, in which inflammatory response and cell apoptosis play a vital role, is frequently encountered in clinical practice. Astragaloside IV (AsIV), a small molecular saponin of Astragalus membranaceus, has been shown to confer protective effects against many cardiovascular diseases. The present study was aimed to investigate the antiinflammatory and antiapoptotic effects and the possible mechanism of AsIV on MI/R injury in rats. Rats were randomly divided into sham operation group, MI/R group and groups with combinations of MI/R and different doses of AsIV. The results showed that the expressions of myocardial toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) were significantly increased, and apoptosis of cardiomyocytes was induced in MI/R group compared with that in sham operation group. Administration of AsIV attenuated MI/R injury, downregulated the expressions of TLR4 and NF-κB and inhibited cell apoptosis as evidenced by decreased terminal deoxynucleotidyl transferase dUTP nick end labeling positive cells, B-cell lymphoma-2 associated X protein and caspase-3 expressions and increased B-cell lymphoma-2 expression compared with that in MI/R group. In addition, AsIV treatment reduced levels of inflammatory cytokines induced by MI/R injury. In conclusion, our results demonstrated that AsIV downregulates TLR4/NF-κB signaling pathway and inhibits cell apoptosis, subsequently attenuating MI/R injury in rats.


Assuntos
Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , NF-kappa B/metabolismo , Saponinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Triterpenos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Regulação para Baixo , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA