Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Mol Ther ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39295144

RESUMO

Pompe disease, a rare genetic neuromuscular disorder, is caused by a deficiency of acid alpha-glucosidase (GAA), leading to an accumulation of glycogen in lysosomes, and resulting in the progressive development of muscle weakness. The current standard treatment, enzyme replacement therapy (ERT), is not curative and has limitations such as poor penetration into skeletal muscle and both the central and peripheral nervous systems, a risk of immune responses against the recombinant enzyme, and the requirement for high doses and frequent infusions. To overcome these limitations, lentiviral vector-mediated hematopoietic stem and progenitor cell (HSPC) gene therapy has been proposed as a next-generation approach for treating Pompe disease. This study demonstrates the potential of lentiviral HSPC gene therapy to reverse the pathological effects of Pompe disease in a preclinical mouse model. It includes a comprehensive safety assessment via integration site analysis, along with single-cell RNA sequencing analysis of central nervous tissue samples to gain insights into the underlying mechanisms of phenotype correction.

2.
Mol Ther Methods Clin Dev ; 27: 464-487, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36419467

RESUMO

Pompe disease is a rare genetic neuromuscular disorder caused by acid α-glucosidase (GAA) deficiency resulting in lysosomal glycogen accumulation and progressive myopathy. Enzyme replacement therapy, the current standard of care, penetrates poorly into the skeletal muscles and the peripheral and central nervous system (CNS), risks recombinant enzyme immunogenicity, and requires high doses and frequent infusions. Lentiviral vector-mediated hematopoietic stem and progenitor cell (HSPC) gene therapy was investigated in a Pompe mouse model using a clinically relevant promoter driving nine engineered GAA coding sequences incorporating distinct peptide tags and codon optimizations. Vectors solely including glycosylation-independent lysosomal targeting tags enhanced secretion and improved reduction of glycogen, myofiber, and CNS vacuolation in key tissues, although GAA enzyme activity and protein was consistently lower compared with native GAA. Genetically modified microglial cells in brains were detected at low levels but provided robust phenotypic correction. Furthermore, an amino acid substitution introduced in the tag reduced insulin receptor-mediated signaling with no evidence of an effect on blood glucose levels in Pompe mice. This study demonstrated the therapeutic potential of lentiviral HSPC gene therapy exploiting optimized GAA tagged coding sequences to reverse Pompe disease pathology in a preclinical mouse model, providing promising vector candidates for further investigation.

3.
Mol Ther ; 30(10): 3209-3225, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35614857

RESUMO

Hematopoietic stem/progenitor cell gene therapy (HSPC-GT) has shown clear neurological benefit in rare diseases, which is achieved through the engraftment of genetically modified microglia-like cells (MLCs) in the brain. Still, the engraftment dynamics and the nature of engineered MLCs, as well as their potential use in common neurogenerative diseases, have remained largely unexplored. Here, we comprehensively characterized how different routes of administration affect the biodistribution of genetically engineered MLCs and other HSPC derivatives in mice. We generated a high-resolution single-cell transcriptional map of MLCs and discovered that they could clearly be distinguished from macrophages as well as from resident microglia by the expression of a specific gene signature that is reflective of their HSPC ontogeny and irrespective of their long-term engraftment history. Lastly, using murine models of Parkinson's disease and frontotemporal dementia, we demonstrated that MLCs can deliver therapeutically relevant levels of transgenic protein to the brain, thereby opening avenues for the clinical translation of HSPC-GT to the treatment of major neurological diseases.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Animais , Engenharia Genética , Terapia Genética , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Distribuição Tecidual
4.
Biomedicines ; 10(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35203513

RESUMO

Pompe disease is an inherited neuromuscular disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). The most severe form is infantile-onset Pompe disease, presenting shortly after birth with symptoms of cardiomyopathy, respiratory failure and skeletal muscle weakness. Late-onset Pompe disease is characterized by a slower disease progression, primarily affecting skeletal muscles. Despite recent advancements in enzyme replacement therapy management several limitations remain using this therapeutic approach, including risks of immunogenicity complications, inability to penetrate CNS tissue, and the need for life-long therapy. The next wave of promising single therapy interventions involves gene therapies, which are entering into a clinical translational stage. Both adeno-associated virus (AAV) vectors and lentiviral vector (LV)-mediated hematopoietic stem and progenitor (HSPC) gene therapy have the potential to provide effective therapy for this multisystemic disorder. Optimization of viral vector designs, providing tissue-specific expression and GAA protein modifications to enhance secretion and uptake has resulted in improved preclinical efficacy and safety data. In this review, we highlight gene therapy developments, in particular, AAV and LV HSPC-mediated gene therapy technologies, to potentially address all components of the neuromuscular associated Pompe disease pathology.

5.
Nat Commun ; 12(1): 5406, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518533

RESUMO

DNA methylation is aberrant in cancer, but the dynamics, regulatory role and clinical implications of such epigenetic changes are still poorly understood. Here, reduced representation bisulfite sequencing (RRBS) profiles of 1538 breast tumors and 244 normal breast tissues from the METABRIC cohort are reported, facilitating detailed analysis of DNA methylation within a rich context of genomic, transcriptional, and clinical data. Tumor methylation from immune and stromal signatures are deconvoluted leading to the discovery of a tumor replication-linked clock with genome-wide methylation loss in non-CpG island sites. Unexpectedly, methylation in most tumor CpG islands follows two replication-independent processes of gain (MG) or loss (ML) that we term epigenomic instability. Epigenomic instability is correlated with tumor grade and stage, TP53 mutations and poorer prognosis. After controlling for these global trans-acting trends, as well as for X-linked dosage compensation effects, cis-specific methylation and expression correlations are uncovered at hundreds of promoters and over a thousand distal elements. Some of these targeted known tumor suppressors and oncogenes. In conclusion, this study demonstrates that global epigenetic instability can erode cancer methylomes and expose them to localized methylation aberrations in-cis resulting in transcriptional changes seen in tumors.


Assuntos
Neoplasias da Mama/genética , Metilação de DNA , Epigênese Genética , Epigenômica/métodos , Regulação Neoplásica da Expressão Gênica , Estudos de Coortes , Ilhas de CpG/genética , Replicação do DNA/genética , Feminino , Genoma Humano/genética , Instabilidade Genômica/genética , Genômica/métodos , Humanos , Células MCF-7 , Mutação , Regiões Promotoras Genéticas/genética , Análise de Sobrevida
6.
Mol Ther Methods Clin Dev ; 20: 312-323, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33511245

RESUMO

Gaucher disease type 1 (GD1) is an inherited lysosomal disorder with multisystemic effects in patients. Hallmark symptoms include hepatosplenomegaly, cytopenias, and bone disease with varying degrees of severity. Mutations in a single gene, glucosidase beta acid 1 (GBA1), are the underlying cause for the disorder, resulting in insufficient activity of the enzyme glucocerebrosidase, which in turn leads to a progressive accumulation of the lipid component glucocerebroside. In this study, we treat mice with signs consistent with GD1, with hematopoietic stem/progenitor cells transduced with a lentiviral vector containing an RNA transcript that, after reverse transcription, results in codon-optimized cDNA that, upon its integration into the genome encodes for functional human glucocerebrosidase. Five months after gene transfer, a highly significant reduction in glucocerebroside accumulation with subsequent reversal of hepatosplenomegaly, restoration of blood parameters, and a tendency of increased bone mass and density was evident in vector-treated mice compared to non-treated controls. Furthermore, histopathology revealed a prominent reduction of Gaucher cell infiltration after gene therapy. The vector displayed an oligoclonal distribution pattern but with no sign of vector-induced clonal dominance and a typical lentiviral vector integration profile. Cumulatively, our findings support the initiation of the first clinical trial for GD1 using the lentiviral vector described here.

7.
Int J Surg Pathol ; 29(6): 648-652, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33345669

RESUMO

Phyllodes tumors (PTs) represent a spectrum of rare, fibroepithelial neoplasms of the breast, which can be subcategorized as benign, borderline, or malignant based on their histological appearance. Accessory breast tissue may present anywhere along the embryological mammary ridge, and at distant locations as aberrant breast tissue. We present the case of a 56-year-old lady with an umbilical mass, thought to represent a strangulated hernia. Sections showed a fibroepithelial tumor with leaf-like ducts, conspicuous mitotic activity (up to 8 per 10 high-power fields), and focal infiltration into fat. Immunohistochemical studies showed diffuse positivity of epithelial cells for estrogen receptor, mammaglobin, GCDFP-15, and CK7. These findings were consistent with a borderline PT. This is the first case report of PT presenting as an umbilical mass, and the first extramammary borderline PT described.


Assuntos
Neoplasias da Mama/diagnóstico , Coristoma/diagnóstico , Tumor Filoide/diagnóstico , Umbigo/patologia , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Coristoma/patologia , Coristoma/cirurgia , Feminino , Humanos , Pessoa de Meia-Idade , Tumor Filoide/patologia , Tumor Filoide/cirurgia , Umbigo/cirurgia
8.
Sci Rep ; 9(1): 13190, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519924

RESUMO

Human olfactory mucosa cells (hOMCs) have been transplanted to the damaged spinal cord both pre-clinically and clinically. To date mainly autologous cells have been tested. However, inter-patient variability in cell recovery and quality, and the fact that the neuroprotective olfactory ensheathing cell (OEC) subset is difficult to isolate, means an allogeneic hOMC therapy would be an attractive "off-the-shelf" alternative. The aim of this study was to generate a candidate cell line from late-adherent hOMCs, thought to contain the OEC subset. Primary late-adherent hOMCs were transduced with a c-MycERTAM gene that enables cell proliferation in the presence of 4-hydroxytamoxifen (4-OHT). Two c-MycERTAM-derived polyclonal populations, PA5 and PA7, were generated and expanded. PA5 cells had a normal human karyotype (46, XY) and exhibited faster growth kinetics than PA7, and were therefore selected for further characterisation. PA5 hOMCs express glial markers (p75NTR, S100ß, GFAP and oligodendrocyte marker O4), neuronal markers (nestin and ß-III-tubulin) and fibroblast-associated markers (CD90/Thy1 and fibronectin). Co-culture of PA5 cells with a neuronal cell line (NG108-15) and with primary dorsal root ganglion (DRG) neurons resulted in significant neurite outgrowth after 5 days. Therefore, c-MycERTAM-derived PA5 hOMCs have potential as a regenerative therapy for neural cells.


Assuntos
Genes myc , Mucosa Olfatória/citologia , Proteínas Recombinantes/genética , Transdução Genética/métodos , Adulto , Animais , Biomarcadores/metabolismo , Linhagem Celular , Técnicas de Cocultura , Gânglios Espinais/citologia , Gentamicinas/farmacologia , Humanos , Cariotipagem , Camundongos , Neuroblastoma/patologia , Mucosa Olfatória/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Estrogênio/genética , Proteínas Recombinantes/metabolismo , Células Receptoras Sensoriais/citologia , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Transgenes
9.
Biotechnol J ; 13(2)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29334181

RESUMO

Human mesenchymal stromal cells (hMSCs) are excellent candidates for cell therapy but their expansion to desired clinical quantities can be compromised by ex vivo processing, due to differences between donor material and process variation. The aim of this article is to characterize growth kinetics of healthy baseline "reference" hMSCs using typical manual processing. Bone-marrow derived hMSCs from ten donors are isolated based on plastic adherence, expanded, and analyzed for their growth kinetics until passage 4. Results indicate that hMSC density decreases with overall time in culture (p < 0.001) but no significant differences are observed between successive passages after passage 1. In addition, fold increase in cell number dropped between passage 1 and 2 for three batches, which correlated to lower performance in total fold increase and expansion potential of these batches, suggesting that proliferative ability of hMSCs can be predicted at an early stage. An indicative bounded operating window is determined between passage 1 and 3 (PDL < 10), despite the high inter-donor variability present under standardized hMSC expansion conditions used. hMSC growth profile analysis will be of benefit to cell therapy manufacturing as a tool to predict culture performance and attainment of clinically-relevant yields, therefore stratifying the patient population based on early observation.


Assuntos
Técnicas de Cultura de Células , Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Mesenquimais/citologia , Doadores de Tecidos , Adipogenia , Adolescente , Células da Medula Óssea/citologia , Adesão Celular , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Condrogênese , Meios de Cultura/química , Humanos , Masculino , Osteogênese
10.
11.
Stem Cells Transl Med ; 6(1): 17-21, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28170173

RESUMO

The 3Rs for a good education are "reading, 'riting, and 'rithmetic." The basis for good health care solutions for the emergent field of cell therapy in the future will also involve 3Rs: regulation, reimbursement, and realization of value. The business models in this new field of cell therapy will involve these 3Rs. This article brings forth realities facing this new industry for its approaches to provide curative health care solutions. Stem Cells Translational Medicine 2017;6:17-21.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Ensaios Clínicos como Assunto , Humanos , Reembolso de Seguro de Saúde , Células-Tronco Mesenquimais/citologia , Controle Social Formal
12.
J Tissue Eng Regen Med ; 11(11): 3157-3167, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-27709812

RESUMO

The cell therapy industry would greatly benefit from a simple point of care solution to remove dimethylsulphoxide (DMSO) from small-volume thawed cell suspensions before injection. A novel dead-end filtration device has been designed and validated, which takes advantage of the higher density of thawed cell suspensions to remove the DMSO and protein impurities from the cell suspension without fouling the filter membrane. The filter was designed to avoid fluid circuits and minimize the surface area that is contacted by the cell suspension, thus reducing cell losses by design. The filtration process was established through optimization of the fluid flow configuration, backflush cycles and filter geometry. Overall, this novel filtration device allows for a 1 ml of thawed cryopreserved cell suspensions, containing 107 cells of a fetal lung fibroblast cell line (MRC-5), to be washed in less than 30 min. More than 95% of the DMSO and up to 94% of the albumin-fluorescein-isothiocyanate content can be removed while the viable cell recovery is higher than 80%. It is also demonstrated that this system can be used for bone marrow-derived human mesenchymal stem cells with more than 73% cell recovery and 85% DMSO reduction. This is the first time that a dead end (normal) filtration process has been used to successfully wash high-density human cell suspensions. In practice, this novel solid-liquid separation technology fills the need for small-volume washing in closed processing systems for cellular therapies. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Crioprotetores/química , Dimetil Sulfóxido/química , Fibroblastos/metabolismo , Filtração/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Linhagem Celular , Terapia Baseada em Transplante de Células e Tecidos/instrumentação , Criopreservação/métodos , Fibroblastos/citologia , Filtração/instrumentação , Humanos
13.
Regen Med ; 10(2): 181-91, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25835482

RESUMO

The regenerative medicine field is large, diverse and active worldwide. A variety of different organizational and product models have been successful, and pioneering entrepreneurs have shown both what can work and, critically, what does not. Evolving regulations, novel funding mechanisms combined with new technological breakthroughs are keeping the field in a state of flux. The field struggles to cope with the lack of infrastructure and investment, it nevertheless has evolved from its roots in human stem cell therapy and tissue and organ transplants to a field composed of a variety of products from multiple cell sources with approval for use in numerous countries. Currently, tens of thousands of patients have been treated with some kind of cell therapy.


Assuntos
Bancos de Sangue , Terapia Baseada em Transplante de Células e Tecidos/métodos , Sangue Fetal/citologia , Medicina Regenerativa/tendências , Adipócitos/citologia , Animais , Células Epiteliais/citologia , Células-Tronco Hematopoéticas/citologia , Humanos , Cooperação Internacional , Células Matadoras Naturais/citologia , Células-Tronco Neurais/citologia , Epitélio Pigmentado da Retina/citologia , Células-Tronco/citologia
14.
Cancer Cell ; 27(4): 502-15, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25873173

RESUMO

Specific combinations of acute myeloid leukemia (AML) disease alleles, including FLT3 and TET2 mutations, confer distinct biologic features and adverse outcome. We generated mice with mutations in Tet2 and Flt3, which resulted in fully penetrant, lethal AML. Multipotent Tet2(-/-);Flt3(ITD) progenitors (LSK CD48(+)CD150(-)) propagate disease in secondary recipients and were refractory to standard AML chemotherapy and FLT3-targeted therapy. Flt3(ITD) mutations and Tet2 loss cooperatively remodeled DNA methylation and gene expression to an extent not seen with either mutant allele alone, including at the Gata2 locus. Re-expression of Gata2 induced differentiation in AML stem cells and attenuated leukemogenesis. TET2 and FLT3 mutations cooperatively induce AML, with a defined leukemia stem cell population characterized by site-specific changes in DNA methylation and gene expression.


Assuntos
Proteínas de Ligação a DNA/genética , Epigênese Genética , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogênicas/genética , Tirosina Quinase 3 Semelhante a fms/genética , Antineoplásicos/uso terapêutico , Diferenciação Celular/genética , Citarabina/uso terapêutico , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Doxorrubicina/uso terapêutico , Fator de Transcrição GATA2/genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Haploinsuficiência , Mutação , Proteínas Proto-Oncogênicas/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo
15.
PLoS One ; 9(9): e104301, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25251366

RESUMO

We have developed a rapid, bead-based combinatorial screening method to determine optimal combinations of variables that direct stem cell differentiation to produce known or novel cell types having pre-determined characteristics. Here we describe three experiments comprising stepwise exposure of mouse or human embryonic cells to 10,000 combinations of serum-free differentiation media, through which we discovered multiple novel, efficient and robust protocols to generate a number of specific hematopoietic and neural lineages. We further demonstrate that the technology can be used to optimize existing protocols in order to substitute costly growth factors with bioactive small molecules and/or increase cell yield, and to identify in vitro conditions for the production of rare developmental intermediates such as an embryonic lymphoid progenitor cell that has not previously been reported.


Assuntos
Diferenciação Celular , Linhagem da Célula , Meios de Cultura Livres de Soro/química , Células-Tronco Embrionárias/citologia , Animais , Técnicas de Cultura de Células/métodos , Células Cultivadas , Técnicas de Química Combinatória/métodos , Meios de Cultura Livres de Soro/farmacologia , Neurônios Dopaminérgicos/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Imunofenotipagem , Células Progenitoras Linfoides/metabolismo , Camundongos , Microesferas , Neurônios/citologia , Neurônios/metabolismo , Fagócitos/citologia , Fagócitos/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
16.
Regen Med ; 9(2): 153-65, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24750057

RESUMO

BACKGROUND: It is very difficult to conserve critical cell characteristics during expansion in culture, particularly those of adult mesenchymal stromal cells (MSCs), whose characteristics can change rapidly even within a short period of expansion. AIM: In this study our aim was to measure cell characteristics that are critical for retention at the injury site after therapeutic delivery. Cells were cultured under conditions typical of current standard best practice. The impact of passage number was assessed and assays were performed in low oxygen (2%) as an in vitro model of physiologic oxygen tension at injury sites. The effect of chemokine preconditioning with SDF1 was also assessed. MATERIALS & METHODS: Bone marrow mononuclear cells from patients recruited to the REGENERATE Phase II clinical trials, along with MSCs from healthy volunteers subjected to a short period of expansion, were assessed for attachment and migration ability. Using MSCs from healthy donors, the effect of reduced oxygen was also assessed. RESULTS: Short-term expansion resulted in increased cell attachment but decreased rate of migration, whereas attachment and migration of patient-derived bone marrow mononuclear cells was highly heterogeneous. Reduced oxygen impaired MSC attachment but not migration. Finally, SDF1 did not improve any of the responses. CONCLUSION: The basic functional responses of MSCs required for retention and engraftment alter rapidly even over a relatively short expansion period. This needs careful consideration when expanding cells to achieve clinical quantities for therapy.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Oxigênio/farmacologia , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Quimiocina CXCL12/farmacologia , Quimiotaxia/efeitos dos fármacos , Fibronectinas/farmacologia , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos
17.
Cell Stem Cell ; 12(6): 644-7, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23746973

RESUMO

During Q4 2012 and Q1 2013, the cell therapy industry made strong progress in translation and commercialization. Continued development of the companies included in a dedicated stock market index suggests emergence of this industry as a distinct healthcare sector.


Assuntos
Investimentos em Saúde/economia , Pesquisa com Células-Tronco/economia , Transplante de Células-Tronco/economia , Humanos
18.
Cell Stem Cell ; 10(5): 492-6, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22560072

RESUMO

In the first quarter of 2012, publicly traded companies in the cell-based therapy industry continued to show promising overall growth. Highlights included $85 million in new capital investment and steady clinical trial progress.


Assuntos
Transplante de Células/economia , Transplante de Células/tendências , Setor de Assistência à Saúde , Humanos , Investimentos em Saúde , Estados Unidos
20.
Cell Stem Cell ; 9(5): 397-401, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-22056137

RESUMO

Stock market volatility in the cell therapy industry has greatly hindered the investment necessary to fund translational therapies. Here, we review the volatility of leading companies and suggest that a distinct industry is maturing to a point at which the volatility should subside, providing a more attractive environment for future growth.


Assuntos
Indústria Farmacêutica/economia , Marketing/economia , Transplante de Células-Tronco/economia , Humanos , Fatores de Tempo , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA