Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Blood Adv ; 1(15): 1001-1015, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29296743

RESUMO

High-mobility group AT-hook 2 (HMGA2) is crucial for the self-renewal of fetal hematopoietic stem cells (HSCs) but is downregulated in adult HSCs via repression by MIRlet-7 and the polycomb-recessive complex 2 (PRC2) including EZH2. The HMGA2 messenger RNA (mRNA) level is often elevated in patients with myelofibrosis that exhibits an advanced myeloproliferative neoplasm (MPN) subtype, and deletion of Ezh2 promotes the progression of severe myelofibrosis in JAK2V617F mice with upregulation of several oncogenes such as Hmga2. However, the direct role of HMGA2 in the pathogenesis of MPNs remains unknown. To clarify the impact of HMGA2 on MPNs carrying the driver mutation, we generated ΔHmga2/JAK2V617F mice overexpressing Hmga2 due to deletion of the 3' untranslated region. Compared with JAK2V617F mice, ΔHmga2/JAK2V617F mice exhibited more severe leukocytosis, anemia and splenomegaly, and shortened survival, whereas severity of myelofibrosis was comparable. ΔHmga2/JAK2V617F cells showed a greater repopulating ability that reproduced the severe MPN compared with JAK2V617F cells in serial bone marrow transplants, indicating that Hmga2 promotes MPN progression at the HSC level. Hmga2 also enhanced apoptosis of JAK2V617F erythroblasts that may worsen anemia. Relative to JAK2V617F hematopoietic stem and progenitor cells (HSPCs), over 30% of genes upregulated in ΔHmga2/JAK2V617F HSPCs overlapped with those derepressed by Ezh2 loss in JAK2V617F/Ezh2Δ/Δ HSPCs, suggesting that Hmga2 may facilitate upregulation of Ezh2 targets. Correspondingly, deletion of Hmga2 ameliorated anemia and splenomegaly in JAK2V617F/Ezh2Δ/wild-type mice, and MIRlet-7 suppression and PRC2 mutations correlated with the elevated HMGA2 mRNA levels in patients with MPNs, especially myelofibrosis. These findings suggest the crucial role of HMGA2 in MPN progression.

2.
Am J Hematol ; 91(12): 1227-1233, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27622320

RESUMO

Dyskeratosis congenita (DC) is a rare inherited telomeropathy most frequently caused by mutations in a number of genes all thought to be involved in telomere maintenance. The main causes of mortality in DC are bone marrow failure as well as malignancies including leukemias and solid tumors. The clinical picture including the degree of bone marrow failure is highly variable and factors that contribute to this variability are poorly understood. Based on the recent finding of frequent clonal hematopoiesis in related bone marrow failure syndromes, we hypothesized that somatic mutations may also occur in DC and may contribute at least in part to the variability in blood production. To evaluate for the presence of clonal hematopoiesis in DC, we used a combination of X-inactivation, comparative whole exome sequencing (WES) and single nucleotide polymorphism array (SNP-A) analyses. We found that clonal hematopoiesis in DC is common, as suggested by skewed X-inactivation in 8 out of 9 female patients compared to 3 out of 10 controls, and by the finding of acquired copy neutral loss-of-heterozygosity on SNP-A analysis. In addition, 3 out of 6 independent DC patients were found to have acquired somatic changes in their bone marrow by WES, including a somatic reversion in DKC1, as well as missense mutations in other protein coding genes. Our results indicate that clonal hematopoiesis is a common feature of DC, and suggest that such somatic changes, though commonly expected to indicate malignancy, may lead to improved blood cell production or stem cell survival. Am. J. Hematol. 91:1227-1233, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Células Clonais/patologia , Disceratose Congênita/genética , Hematopoese/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Disceratose Congênita/patologia , Feminino , Humanos , Lactente , Perda de Heterozigosidade , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Inativação do Cromossomo X , Adulto Jovem
3.
PLoS One ; 11(4): e0152263, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27042854

RESUMO

MDM2, an E3 ubiquitin ligase, is an important negative regulator of tumor suppressor p53. In turn the Mdm2 gene is a transcriptional target of p53, forming a negative feedback loop that is important in cell cycle control. It has recently become apparent that the ubiquitination of p53 by MDM2 can be inhibited when certain ribosomal proteins, including RPL5 and RPL11, bind to MDM2. This inhibition, and the resulting increase in p53 levels has been proposed to be responsible for the red cell aplasia seen in Diamond-Blackfan anemia (DBA) and in 5q- myelodysplastic syndrome (MDS). DBA and 5q- MDS are associated with inherited (DBA) or acquired (5q- MDS) haploinsufficiency of ribosomal proteins. A mutation in Mdm2 causing a C305F amino acid substitution blocks the binding of ribosomal proteins. Mice harboring this mutation (Mdm2C305F), retain a normal p53 response to DNA damage, but lack the p53 response to perturbations in ribosome biogenesis. While studying the interaction between RP haploinsufficiency and the Mdm2C305F mutation we noticed that Mdm2C305F homozygous mice had altered hematopoiesis. These mice developed a mild macrocytic anemia with reticulocytosis. In the bone marrow (BM), these mice showed a significant decrease in Ter119hi cells compared to wild type (WT) littermates, while no decrease in the number of mature erythroid cells (Ter119hiCD71low) was found in the spleen, which showed compensated bone marrow hematopoiesis. In methylcellulose cultures, BFU-E colonies from the mutant mice were slightly reduced in number and there was a significant reduction in CFU-E colony numbers in mutant mice compared with WT controls (p < 0.01). This erythropoietic defect was abrogated by concomitant p53 deficiency (Trp53ko/ko). Further investigation revealed that in Mdm2C305F animals, there was a decrease in Lin-Sca-1+c-Kit+ (LSK) cells, accompanied by significant decreases in multipotent progenitor (MPP) cells (p < 0.01). Competitive BM repopulation experiments showed that donor BM harboring the Mdm2C305F mutation possessed decreased repopulation capacity compared to WT BM, suggesting a functional stem cell deficit. These results suggest that there is a fine tuned balance in the interaction of ribosomal proteins with the MDM2/p53 axis which is important in normal hematopoiesis.


Assuntos
Medula Óssea/metabolismo , Células Eritroides/metabolismo , Eritropoese , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Ribossômicas/metabolismo , Substituição de Aminoácidos , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/metabolismo , Anemia de Diamond-Blackfan/patologia , Animais , Medula Óssea/patologia , Células Eritroides/patologia , Haploinsuficiência , Camundongos , Camundongos Knockout , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Síndromes Mielodisplásicas/patologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Ribossomos/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Cancer Genet ; 209(1-2): 1-10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26702937

RESUMO

Acquired aplastic anemia (aAA) results from the T cell-mediated autoimmune destruction of hematopoietic stem cells. Factors predicting response to immune suppression therapy (IST) or development of myelodysplastic syndrome (MDS) are beginning to be elucidated. Our recent data suggest most patients with aAA treated with IST develop clonal somatic genetic alterations in hematopoietic cells. One frequent acquired abnormality is copy-number neutral loss of heterozygosity on chromosome 6p (6p CN-LOH) involving the human leukocyte antigen (HLA) locus. We hypothesized that because 6p CN-LOH clones may arise from selective pressure to escape immune surveillance through deletion of HLA alleles, the development of 6p CN-LOH may affect response to IST. We used single nucleotide polymorphism array genotyping and targeted next-generation sequencing of HLA alleles to assess frequency of 6p CN-LOH, identity of HLA alleles lost through 6p CN-LOH, and impact of 6p CN-LOH on response to IST. 6p CN-LOH clones were present in 11.3% of patients, remained stable over time, and were not associated with development of MDS-defining cytogenetic abnormalities. Notably, no patient with 6p CN-LOH treated with IST achieved a complete response. In summary, clonal 6p CN-LOH in aAA defines a unique subgroup of patients that may provide insights into hematopoietic clonal evolution.


Assuntos
Anemia Aplástica/genética , Cromossomos Humanos Par 6 , Evolução Clonal , Variações do Número de Cópias de DNA , Perda de Heterozigosidade , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Adulto Jovem
5.
PLoS One ; 10(10): e0140036, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26474164

RESUMO

Diamond Blackfan Anemia (DBA) is a rare, congenital erythrocyte aplasia that is usually caused by haploinsufficiency of ribosomal proteins due to diverse mutations in one of several ribosomal genes. A striking feature of this disease is that a range of different mutations in ribosomal proteins results in similar disease phenotypes primarily characterized by erythrocyte abnormalities and macrocytic anemia, while most other cell types in the body are minimally affected. Previously, we analyzed the erythrocyte membrane proteomes of several DBA patients and identified several proteins that are not typically associated with this cell type and that suggested inflammatory mechanisms contribute to the pathogenesis of DBA. In this study, we evaluated the erythrocyte cytosolic proteome of DBA patients through in-depth analysis of hemoglobin-depleted erythrocyte cytosols. Simple, reproducible, hemoglobin depletion using nickel columns enabled in-depth analysis of over 1000 cytosolic erythrocyte proteins with only moderate total analysis time per proteome. Label-free quantitation and statistical analysis identified 29 proteins with significantly altered abundance levels in DBA patients compared to matched healthy control donors. Proteins that were significantly increased in DBA erythrocyte cytoplasms included three proteasome subunit beta proteins that make up the immunoproteasome and proteins induced by interferon-γ such as n-myc interactor and interferon-induced 35 kDa protein [NMI and IFI35 respectively]. Pathway analysis confirmed the presence of an inflammatory signature in erythrocytes of DBA patients and predicted key upstream regulators including mitogen activated kinase 1, interferon-γ, tumor suppressor p53, and tumor necrosis factor. These results show that erythrocytes in DBA patients are intrinsically different from those in healthy controls which may be due to an inflammatory response resulting from the inherent molecular defect of ribosomal protein haploinsufficiency or changes in the bone marrow microenvironment that leads to red cell aplasia in DBA patients.


Assuntos
Anemia de Diamond-Blackfan/sangue , Citosol/metabolismo , Eritrócitos/metabolismo , Proteoma/metabolismo , Adolescente , Adulto , Feminino , Humanos , Inflamação/sangue , Masculino
6.
PLoS One ; 10(8): e0134878, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26258650

RESUMO

Diamond Blackfan Anemia (DBA) is an inherited bone marrow failure syndrome with clinical features of red cell aplasia and variable developmental abnormalities. Most affected patients have heterozygous loss of function mutations in ribosomal protein genes but the pathogenic mechanism is still unknown. We generated induced pluripotent stem cells from DBA patients carrying RPS19 or RPL5 mutations. Transcriptome analysis revealed the striking dysregulation of the transforming growth factor ß (TGFß) signaling pathway in DBA lines. Expression of TGFß target genes, such as TGFBI, BAMBI, COL3A1 and SERPINE1 was significantly increased in the DBA iPSCs. We quantified intermediates in canonical and non-canonical TGFß pathways and observed a significant increase in the levels of the non-canonical pathway mediator p-JNK in the DBA iPSCs. Moreover, when the mutant cells were corrected by ectopic expression of WT RPS19 or RPL5, levels of p-JNK returned to normal. Surprisingly, nuclear levels of SMAD4, a mediator of canonical TGFß signaling, were decreased in DBA cells due to increased proteolytic turnover. We also observed the up-regulation of TGFß1R, TGFß2, CDKN1A and SERPINE1 mRNA, and the significant decrease of GATA1 mRNA in the primitive multilineage progenitors. In summary our observations identify for the first time a dysregulation of the TGFß pathway in the pathobiology of DBA.


Assuntos
Anemia de Diamond-Blackfan/metabolismo , Regulação da Expressão Gênica , Células-Tronco Pluripotentes/citologia , Fator de Crescimento Transformador beta1/metabolismo , Núcleo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fibroblastos/metabolismo , Fator de Transcrição GATA1/metabolismo , Células-Tronco Hematopoéticas/citologia , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Moleculares , Mutação , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Ribossômicas/genética , Ribossomos/metabolismo , Transdução de Sinais , Proteína Smad4/metabolismo , Transcriptoma , Regulação para Cima
7.
Cell Stem Cell ; 17(2): 165-77, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26165925

RESUMO

The transcription factor RUNX1 is frequently mutated in myelodysplastic syndrome and leukemia. RUNX1 mutations can be early events, creating preleukemic stem cells that expand in the bone marrow. Here we show, counterintuitively, that Runx1-deficient hematopoietic stem and progenitor cells (HSPCs) have a slow growth, low biosynthetic, small cell phenotype and markedly reduced ribosome biogenesis (Ribi). The reduced Ribi involved decreased levels of rRNA and many mRNAs encoding ribosome proteins. Runx1 appears to directly regulate Ribi; Runx1 is enriched on the promoters of genes encoding ribosome proteins and binds the rDNA repeats. Runx1-deficient HSPCs have lower p53 levels, reduced apoptosis, an attenuated unfolded protein response, and accordingly are resistant to genotoxic and ER stress. The low biosynthetic activity and corresponding stress resistance provides a selective advantage to Runx1-deficient HSPCs, allowing them to expand in the bone marrow and outcompete normal HSPCs.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/deficiência , Células-Tronco Hematopoéticas/metabolismo , Biogênese de Organelas , Ribossomos/metabolismo , Animais , Autofagia/efeitos dos fármacos , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Camundongos , Mutagênicos/toxicidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Sequências Repetitivas de Ácido Nucleico/genética , Ribossomos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/metabolismo
8.
Cancer Genet ; 208(4): 115-28, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25800665

RESUMO

Acquired aplastic anemia (aAA) is a nonmalignant disease caused by autoimmune destruction of early hematopoietic cells. Clonal hematopoiesis is a late complication, seen in 20-25% of older patients. We hypothesized that clonal hematopoiesis in aAA is a more general phenomenon, which can arise early in disease, even in younger patients. To evaluate clonal hematopoiesis in aAA, we used comparative whole exome sequencing of paired bone marrow and skin samples in 22 patients. We found somatic mutations in 16 patients (72.7%) with a median disease duration of 1 year; of these, 12 (66.7%) were patients with pediatric-onset aAA. Fifty-eight mutations in 51 unique genes were found primarily in pathways of immunity and transcriptional regulation. Most frequently mutated was PIGA, with seven mutations. Only two mutations were in genes recurrently mutated in myelodysplastic syndrome. Two patients had oligoclonal loss of the HLA alleles, linking immune escape to clone emergence. Two patients had activating mutations in key signaling pathways (STAT5B (p.N642H) and CAMK2G (p.T306M)). Our results suggest that clonal hematopoiesis in aAA is common, with two mechanisms emerging-immune escape and increased proliferation. Our findings expand conceptual understanding of this nonneoplastic blood disorder. Future prospective studies of clonal hematopoiesis in aAA will be critical for understanding outcomes and for designing personalized treatment strategies.


Assuntos
Anemia Aplástica/genética , Hematopoese , Mutação , Adolescente , Adulto , Anemia Aplástica/sangue , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Criança , Pré-Escolar , Exoma , Feminino , Humanos , Lactente , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Dados de Sequência Molecular , Síndromes Mielodisplásicas/genética , Polimorfismo de Nucleotídeo Único , Fator de Transcrição STAT5/genética , Análise de Sequência de DNA , Transdução de Sinais , Adulto Jovem
9.
Ann Med ; 46(6): 353-63, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24888387

RESUMO

The inherited bone marrow failure syndromes are a diverse group of genetic diseases associated with inadequate production of one or more blood cell lineages. Examples include Fanconi anemia, dyskeratosis congenita, Diamond-Blackfan anemia, thrombocytopenia absent radii syndrome, severe congenital neutropenia, and Shwachman-Diamond syndrome. The management of these disorders was once the exclusive domain of pediatric subspecialists, but increasingly physicians who care for adults are being called upon to diagnose or treat these conditions. Through a series of patient vignettes, we highlight the clinical manifestations of inherited bone marrow failure syndromes in adolescents and young adults. The diagnostic and therapeutic challenges posed by these diseases are discussed.


Assuntos
Hemoglobinúria Paroxística/diagnóstico , Adolescente , Adulto , Anemia Aplástica , Anemia de Diamond-Blackfan/diagnóstico , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/terapia , Doenças da Medula Óssea/diagnóstico , Doenças da Medula Óssea/genética , Doenças da Medula Óssea/terapia , Transtornos da Insuficiência da Medula Óssea , Síndrome Congênita de Insuficiência da Medula Óssea , Disceratose Congênita/diagnóstico , Disceratose Congênita/genética , Disceratose Congênita/terapia , Insuficiência Pancreática Exócrina/diagnóstico , Insuficiência Pancreática Exócrina/genética , Insuficiência Pancreática Exócrina/terapia , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/genética , Anemia de Fanconi/terapia , Hemoglobinúria Paroxística/genética , Hemoglobinúria Paroxística/terapia , Humanos , Lipomatose/diagnóstico , Lipomatose/genética , Lipomatose/terapia , Neutropenia/congênito , Neutropenia/diagnóstico , Neutropenia/genética , Neutropenia/terapia , Rádio (Anatomia) , Síndrome de Shwachman-Diamond , Trombocitopenia/diagnóstico , Trombocitopenia/genética , Trombocitopenia/terapia , Deformidades Congênitas das Extremidades Superiores/diagnóstico , Deformidades Congênitas das Extremidades Superiores/genética , Deformidades Congênitas das Extremidades Superiores/terapia , Adulto Jovem
10.
Br J Haematol ; 164(1): 73-82, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24116929

RESUMO

The bone marrow failure syndromes (BMFS) are a heterogeneous group of rare blood disorders characterized by inadequate haematopoiesis, clonal evolution, and increased risk of leukaemia. Single nucleotide polymorphism arrays (SNP-A) have been proposed as a tool for surveillance of clonal evolution in BMFS. To better understand the natural history of BMFS and to assess the clinical utility of SNP-A in these disorders, we analysed 124 SNP-A from a comprehensively characterized cohort of 91 patients at our BMFS centre. SNP-A were correlated with medical histories, haematopathology, cytogenetic and molecular data. To assess clonal evolution, longitudinal analysis of SNP-A was performed in 25 patients. We found that acquired copy number-neutral loss of heterozygosity (CN-LOH) was significantly more frequent in acquired aplastic anaemia (aAA) than in other BMFS (odds ratio 12·2, P < 0·01). Homozygosity by descent was most common in congenital BMFS, frequently unmasking autosomal recessive mutations. Copy number variants (CNVs) were frequently polymorphic, and we identified CNVs enriched in neutropenia and aAA. Our results suggest that acquired CN-LOH is a general phenomenon in aAA that is probably mechanistically and prognostically distinct from typical CN-LOH of myeloid malignancies. Our analysis of clinical utility of SNP-A shows the highest yield of detecting new clonal haematopoiesis at diagnosis and at relapse.


Assuntos
Medula Óssea/patologia , Aberrações Cromossômicas , Hemoglobinúria Paroxística/genética , Hemoglobinúria Paroxística/patologia , Adolescente , Adulto , Anemia Aplástica , Sequência de Bases , Doenças da Medula Óssea , Transtornos da Insuficiência da Medula Óssea , Criança , Pré-Escolar , Estudos de Coortes , Variações do Número de Cópias de DNA , Feminino , Humanos , Lactente , Perda de Heterozigosidade , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Estudos Retrospectivos , Adulto Jovem
12.
Am J Hematol ; 88(10): 862-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23798465

RESUMO

Acquired aplastic anemia (AA) is a rare life-threatening bone marrow failure syndrome, caused by autoimmune destruction of hematopoietic stem and progenitor cells. Epidemiologic studies suggest that environmental exposures and metabolic gene polymorphisms contribute to disease pathogenesis. Several case-control studies linked homozygous deletion of the glutathione S-transferase theta (GSTT1) gene to AA; however, the role of GSTT1 deletion remains controversial as other studies failed to confirm the association. We asked whether a more precise relationship between the GSTT1 null polymorphism and aplastic anemia could be defined using a meta-analysis of 609 aplastic anemia patients, including an independent cohort of 67 patients from our institution. We searched PubMed, Embase, and the Cochrane Database for studies evaluating the association between GSTT1 null genotype and development of AA. Seven studies, involving a total of 609 patients and 3,914 controls, fulfilled the eligibility criteria. Meta-analysis revealed a significant association of GSTT1 null genotype and AA, with an OR = 1.74 (95% CI 1.31-2.31, P < 0.0001). The effect was not driven by any one individual result, nor was there evidence of significant publication bias. The association between AA and GSTT1 deletion suggests a role of glutathione-conjugation in AA, possibly through protecting the hematopoietic compartment from endogenous metabolites or environmental exposures. We propose a model whereby protein adducts generated by reactive metabolites serve as neo-epitopes to trigger autoimmunity in aplastic anemia.


Assuntos
Anemia Aplástica/genética , Deleção de Genes , Predisposição Genética para Doença , Genótipo , Glutationa Transferase/genética , Modelos Biológicos , Polimorfismo Genético , Anemia Aplástica/enzimologia , Estudos de Casos e Controles , Feminino , Glutationa Transferase/metabolismo , Humanos , Masculino , PubMed
13.
Blood ; 122(6): 912-21, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23744582

RESUMO

Diamond Blackfan anemia (DBA) is a congenital disorder with erythroid (Ery) hypoplasia and tissue morphogenic abnormalities. Most DBA cases are caused by heterozygous null mutations in genes encoding ribosomal proteins. Understanding how haploinsufficiency of these ubiquitous proteins causes DBA is hampered by limited availability of tissues from affected patients. We generated induced pluripotent stem cells (iPSCs) from fibroblasts of DBA patients carrying mutations in RPS19 and RPL5. Compared with controls, DBA fibroblasts formed iPSCs inefficiently, although we obtained 1 stable clone from each fibroblast line. RPS19-mutated iPSCs exhibited defects in 40S (small) ribosomal subunit assembly and production of 18S ribosomal RNA (rRNA). Upon induced differentiation, the mutant clone exhibited globally impaired hematopoiesis, with the Ery lineage affected most profoundly. RPL5-mutated iPSCs exhibited defective 60S (large) ribosomal subunit assembly, accumulation of 12S pre-rRNA, and impaired erythropoiesis. In both mutant iPSC lines, genetic correction of ribosomal protein deficiency via complementary DNA transfer into the "safe harbor" AAVS1 locus alleviated abnormalities in ribosome biogenesis and hematopoiesis. Our studies show that pathological features of DBA are recapitulated by iPSCs, provide a renewable source of cells to model various tissue defects, and demonstrate proof of principle for genetic correction strategies in patient stem cells.


Assuntos
Anemia de Diamond-Blackfan/sangue , Células-Tronco Pluripotentes Induzidas/citologia , Ribossomos/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem da Célula , Fibroblastos/citologia , Fibroblastos/metabolismo , Vetores Genéticos , Humanos , Lentivirus/genética , Mutação , RNA Ribossômico 18S/metabolismo , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/patologia , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/patologia
14.
Pediatr Blood Cancer ; 60(6): E4-6, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23335200

RESUMO

We describe an African American family with Hoyeraal-Hreidarrson syndrome (HHS) in which 2 TERT mutations (causing P530L and A880T amino acid changes) and two in the DKC1 variants (G486R and A487A) were segregating. Both genes are associated with dyskeratosis congenita and HHS. It was important to determine the importance of these mutations in disease pathogenesis to counsel family members. From genetic analysis of family members, telomere length and X-inactivation studies we concluded that compound heterozygosity for the TERT mutations was the major cause of HHS and the DKC1 G486R variant is a rare African variant unlikely to cause disease.


Assuntos
Proteínas de Ciclo Celular/genética , Disceratose Congênita/genética , Retardo do Crescimento Fetal/genética , Deficiência Intelectual/genética , Microcefalia/genética , Proteínas Nucleares/genética , Telomerase/genética , Sequência de Aminoácidos , Família , Feminino , Citometria de Fluxo , Humanos , Masculino , Dados de Sequência Molecular , Mutação , Linhagem
16.
Clin Transl Oncol ; 14(10): 755-63, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22855157

RESUMO

BACKGROUND: The predominant X-linked form of dyskeratosis congenita results from mutations in dyskerin, a protein required for ribosomal RNA modification that is also a component of the telomerase complex. We have previously found that expression of an internal fragment of dyskerin (GSE24.2) rescues telomerase activity in X-linked dyskeratosis congenita (X-DC) patient cells. MATERIALS AND METHODS: Here, we have generated F9 mouse cell lines expressing the most frequent mutation found in X-DC patients, A353V and study the effect of expressing the GSE24.2 cDNA or GSE24.2 peptide on telomerase activity by TRAP assay, and mTERT and mTR expression by Q-PCR. Point mutation in GSE24.2 residues were generated by site-directed mutagenesis. RESULTS: Expression of GSE24.2 increases mTR and to a lesser extent mTERT RNA levels, and leads to recovery of telomerase activity. Point mutations in GSE24.2 residues known to be highly conserved and crucial for the pseudouridine-synthase activity of dyskerin abolished the effect of the peptide. Recovery of telomerase activity and increase in mTERT levels were found when the GSE24.2 peptide purified from bacteria was introduced into the cells. Moreover, mTR stability was also rescued by transfection of the peptide GSE24.2. DISCUSSION: These data indicate that supplying GSE24.2, either from a cDNA vector, or as a peptide, can reduces the pathogenic effects of Dkc1 mutations and could form the basis of a novel therapeutic approach.


Assuntos
Proteínas de Ciclo Celular/genética , Disceratose Congênita/genética , Disceratose Congênita/terapia , Mutação de Sentido Incorreto/fisiologia , Proteínas Nucleares/genética , Estabilidade de RNA/genética , RNA/metabolismo , Telomerase/metabolismo , Alanina/genética , Sequência de Aminoácidos , Substituição de Aminoácidos/fisiologia , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/uso terapêutico , Células Cultivadas , Disceratose Congênita/metabolismo , Disceratose Congênita/patologia , Ativação Enzimática/genética , Terapia Genética , Células HeLa , Humanos , Transferases Intramoleculares/química , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/fisiologia , Proteínas Nucleares/uso terapêutico , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/uso terapêutico , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , RNA/química , Estabilidade de RNA/efeitos dos fármacos , Estabilidade de RNA/fisiologia , Telomerase/química , Valina/genética
17.
J Clin Invest ; 122(7): 2346-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22706300

RESUMO

Mutations in numerous genes encoding ribosomal proteins (RPs) occur in 50%-70% of individuals with Diamond-Blackfan anemia (DBA), establishing the disease as a ribosomopathy. As described in this issue of JCI, Sankaran, Gazda, and colleagues used genome-wide exome sequencing to study DBA patients with no detectable mutations in RP genes. They identified two unrelated pedigrees in which the disease is associated with mutations in GATA1, which encodes an essential hematopoietic transcription factor with no known mechanistic links to ribosomes. These findings ignite an interesting and potentially emotional debate on how we define DBA and whether the term should be restricted to pure ribosomopathies. More generally, the work reflects the powerful knowledge and controversies arising from the deluge of data generated by new genetic technologies that are being used to analyze human diseases.


Assuntos
Anemia de Diamond-Blackfan/genética , Exoma , Fator de Transcrição GATA1/genética , Humanos , Masculino
18.
Blood ; 117(22): 5860-9, 2011 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-21460244

RESUMO

Overexpression of high mobility group AT-hook 2 (HMGA2) is found in a number of benign and malignant tumors, including the clonal PIGA(-) cells in 2 cases of paroxysmal nocturnal hemoglobinuria (PNH) and some myeloproliferative neoplasms (MPNs), and recently in hematopoietic cell clones resulting from gene therapy procedures. In nearly all these cases overexpression is because of deletions or translocations that remove the 3' untranslated region (UTR) which contains binding sites for the regulatory micro RNA let-7. We were therefore interested in the effect of HMGA2 overexpression in hematopoietic tissues in transgenic mice (ΔHmga2 mice) carrying a 3'UTR-truncated Hmga2 cDNA. ΔHmga2 mice expressed increased levels of HMGA2 protein in various tissues including hematopoietic cells and showed proliferative hematopoiesis with increased numbers in all lineages of peripheral blood cells, hypercellular bone marrow (BM), splenomegaly with extramedullary erythropoiesis and erythropoietin-independent erythroid colony formation. ΔHmga2-derived BM cells had a growth advantage over wild-type cells in competitive repopulation and serial transplantation experiments. Thus overexpression of HMGA2 leads to proliferative hematopoiesis with clonal expansion at the stem cell and progenitor levels and may account for the clonal expansion in PNH and MPNs and in gene therapy patients after vector insertion disrupts the HMGA2 locus.


Assuntos
Regiões 3' não Traduzidas/genética , DNA Complementar/genética , Proteína HMGA2/fisiologia , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Transtornos Mieloproliferativos/etiologia , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Medula Óssea/metabolismo , Medula Óssea/patologia , Células Clonais , Eritropoetina/sangue , Citometria de Fluxo , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Humanos , Técnicas Imunoenzimáticas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos Mieloproliferativos/patologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Semin Hematol ; 48(2): 106-16, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21435507

RESUMO

Diamond Blackfan anemia (DBA) is a genetic syndrome characterized by red blood cell aplasia in association with developmental abnormalities such as growth retardation, orofacial, hand or limb malformations, urogenital anomalies, and heart defects. The only known cause is heterozygosity for mutations in genes encoding ribosomal proteins. Understanding how defective ribosome biogenesis and function, important for all cells, causes defects in erythropoiesis and tissue-specific phenotypes during development is paramount to the evolution of effective treatment protocols. Here, we discuss how animal models based on mammals, insects, and fish replicate genetic or developmental aspects of DBA and have led to the identification of pathways and candidate molecules that are important in the pathogenesis of the disease. A recurring theme in many of these models suggests that defective ribosome biogenesis induces a p53-dependent cell cycle checkpoint in cells that require high levels of ribosome production and leads to cell type-specific, whole animal phenotypes.


Assuntos
Anemia de Diamond-Blackfan/genética , Modelos Animais de Doenças , Proteína Supressora de Tumor p53/genética , Anemia de Diamond-Blackfan/metabolismo , Anemia de Diamond-Blackfan/patologia , Animais , Ciclo Celular/genética , Proteína Supressora de Tumor p53/metabolismo
20.
Aging Cell ; 10(2): 338-48, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21241452

RESUMO

Mutations in DKC1, encoding telomerase associated protein dyskerin, cause X-linked dyskeratosis congenita (DC), a bone marrow (BM) failure, and cancer susceptibility syndrome. Decreased accumulation of telomerase RNA resulting in excessive telomere shortening and premature cellular senescence is thought to be the primary cause of disease in X-linked DC. Affected tissues are those that require constant renewal by stem cell activity. We previously showed that in Dkc1(Δ15) mice, which contain a mutation that is a copy of a human mutation causing DC, mutant cells have a telomerase-dependent proliferative defect and increased accumulation of DNA damage in the first generation before the telomeres are short. We now demonstrate the presence of the growth defect in Dkc1(Δ15) mouse embryonic fibroblasts in vitro and show that accumulation of DNA damage and levels of reactive oxygen species increase with increasing population doublings. Treatment with the antioxidant, N-acetyl cysteine (NAC), partially rescued the growth disadvantage of mutant cells in vitro and in vivo. Competitive BM repopulation experiments showed that the Dkc1(Δ15) mutation is associated with a functional stem cell defect that becomes more severe with increasing age, consistent with accelerated senescence, a hallmark of DC hematopoiesis. This stem cell phenotype was partially corrected by NAC treatment. These results suggest that a pathogenic Dkc1 mutation accelerates stem cell aging, that increased oxidative stress might play a role in the pathogenesis of X-linked DC, and that some manifestations of DC may be prevented or delayed by antioxidant treatment.


Assuntos
Antioxidantes/uso terapêutico , Proteínas de Ciclo Celular/metabolismo , Senescência Celular/fisiologia , Disceratose Congênita/tratamento farmacológico , Disceratose Congênita/fisiopatologia , Células-Tronco Hematopoéticas/fisiologia , Proteínas Nucleares/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Células Cultivadas , Disceratose Congênita/patologia , Feminino , Fibroblastos/citologia , Fibroblastos/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Telomerase/genética , Telomerase/metabolismo , Telômero/metabolismo , Telômero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA