Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cannabis Res ; 6(1): 14, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38494488

RESUMO

BACKGROUND: The treatment of diverse diseases using plant-derived products is actively encouraged. In the past few years, cannabidiol (CBD) has emerged as a potent cannabis-derived drug capable of managing various debilitating neurological infections, diseases, and their associated complications. CBD has demonstrated anti-inflammatory and curative effects in neuropathological conditions, and it exhibits therapeutic, apoptotic, anxiolytic, and neuroprotective properties. However, more information on the reactions and ability of CBD to alleviate brain-related disorders and the neuroinflammation that accompanies them is needed. MAIN BODY: This narrative review deliberates on the therapeutic and remedial prospects of CBD with an emphasis on neurological and neuropsychiatric disorders. An extensive literature search followed several scoping searches on available online databases such as PubMed, Web of Science, and Scopus with the main keywords: CBD, pro-inflammatory cytokines, and cannabinoids. After a purposive screening of the retrieved papers, 170 (41%) of the articles (published in English) aligned with the objective of this study and retained for inclusion. CONCLUSION: CBD is an antagonist against pro-inflammatory cytokines and the cytokine storm associated with neurological infections/disorders. CBD regulates adenosine/oxidative stress and aids the downregulation of TNF-α, restoration of BDNF mRNA expression, and recovery of serotonin levels. Thus, CBD is involved in immune suppression and anti-inflammation. Understanding the metabolites associated with response to CBD is imperative to understand the phenotype. We propose that metabolomics will be the next scientific frontier that will reveal novel information on CBD's therapeutic tendencies in neurological/neuropsychiatric disorders.

2.
Viruses ; 16(2)2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38400088

RESUMO

HIV-exposed, uninfected (HEU) children present with suboptimal growth and a greater susceptibility to infection in early life when compared to HIV-unexposed, uninfected (HUU) children. The reasons for these findings are poorly understood. We used a metabolomics approach to investigate the metabolic differences between pregnant women living with HIV (PWLWH) and their HEU infants compared to the uninfected and unexposed controls. Untargeted metabolomic profiling was performed using 1H-NMR spectroscopy on maternal plasma at 28 weeks' gestation and infant plasma at birth, 6/10 weeks, and 6 months. PWLWH were older but, apart from a larger 28 week mid-upper-arm circumference, anthropometrically similar to the controls. At all the time points, HEU infants had a significantly reduced growth compared to HUU infants. PWLWH had lower plasma 3-hydroxybutyric acid, acetoacetic acid, and acetic acid levels. In infants at birth, threonine and myo-inositol levels were lower in the HEU group while formic acid levels were higher. At 6/10 weeks, betaine and tyrosine levels were lower in the HEU group. Finally, at six months, 3-hydroxyisobutyric acid levels were lower while glycine levels were higher in the HEU infants. The NMR analysis has provided preliminary information indicating differences between HEU and HUU infants' plasma metabolites involved in energy utilization, growth, and protection from infection.


Assuntos
Infecções por HIV , Lactente , Recém-Nascido , Criança , Humanos , Feminino , Gravidez , Infecções por HIV/prevenção & controle , Mães , Betaína , Metabolômica
3.
Front Physiol ; 14: 1117687, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215177

RESUMO

Introduction: Extreme endurance events may result in numerous adverse metabolic, immunologic, and physiological perturbations that may diminish athletic performance and adversely affect the overall health status of an athlete, especially in the absence of sufficient recovery. A comprehensive understanding of the post-marathon recovering metabolome, may aid in the identification of new biomarkers associated with marathon-induced stress, recovery, and adaptation, which can facilitate the development of improved training and recovery programs and personalized monitoring of athletic health/recovery/performance. Nevertheless, an untargeted, multi-disciplinary elucidation of the complex underlying biochemical mechanisms involved in recovery after such an endurance event is yet to be demonstrated. Methods: This investigation employed an untargeted proton nuclear magnetic resonance metabolomics approach to characterize the post-marathon recovering metabolome by systematically comparing the pre-, immediately post, 24, and 48 h post-marathon serum metabolite profiles of 15 athletes. Results and Discussion: A total of 26 metabolites were identified to fluctuate significantly among post-marathon and recovery time points and were mainly attributed to the recovery of adenosine triphosphate, redox balance and glycogen stores, amino acid oxidation, changes to gut microbiota, and energy drink consumption during the post-marathon recovery phase. Additionally, metabolites associated with delayed-onset muscle soreness were observed; however, the mechanisms underlying this commonly reported phenomenon remain to be elucidated. Although complete metabolic recovery of the energy-producing pathways and fuel substrate stores was attained within the 48 h recovery period, several metabolites remained perturbed throughout the 48 h recovery period and/or fluctuated again following their initial recovery to pre-marathon-related levels.

4.
STAR Protoc ; 4(2): 102181, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36961819

RESUMO

Purine and pyrimidine disorders are often difficult to diagnose. Here, we present a 1H-NMR analysis protocol for the quantification of purines and pyrimidines in urine to diagnose associated disorders. We describe steps for pH adjustment, sample preparation, and 1H-NMR analysis and data analysis. The use of 1H-NMR requires a relatively small sample volume (1 mL) and minimal sample preparation. Analysis time produces accurate and reproducible data within 2 h.

5.
Front Neurol ; 13: 804838, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386409

RESUMO

Mycobacterium tuberculosis infection, which claims hundreds of thousands of lives each year, is typically characterized by the formation of tuberculous granulomas - the histopathological hallmark of tuberculosis (TB). Our knowledge of granulomas, which comprise a biologically diverse body of pro- and anti-inflammatory cells from the host immune responses, is based mainly upon examination of lungs, in both human and animal studies, but little on their counterparts from other organs of the TB patient such as the brain. The biological heterogeneity of TB granulomas has led to their diverse, relatively uncoordinated, categorization, which is summarized here. However, there is a pressing need to elucidate more fully the phenotype of the granulomas from infected patients. Newly emerging studies at the protein (proteomics) and metabolite (metabolomics) levels have the potential to achieve this. In this review we summarize the diverse nature of TB granulomas based upon the literature, and amplify these accounts by reporting on the relatively few, emerging proteomics and metabolomics studies on TB granulomas. Metabolites (for example, trimethylamine-oxide) and proteins (such as the peptide PKAp) associated with TB granulomas, and knowledge of their localizations, help us to understand the resultant phenotype. Nevertheless, more multidisciplinary 'omics studies, especially in human subjects, are required to contribute toward ushering in a new era of understanding of TB granulomas - both at the site of infection, and on a systemic level.

6.
Metabolomics ; 15(12): 158, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776682

RESUMO

INTRODUCTION: Manifestations of fatigue range from chronic fatigue up to a severe syndrome and myalgic encephalomyelitis. Fatigue grossly affects the functional status and quality of life of affected individuals, prompting the World Health Organization to recognize it as a chronic non-communicable condition. OBJECTIVES: Here, we explore the potential of urinary metabolite information to complement clinical criteria of fatigue, providing an avenue towards an objective measure of fatigue in patients presenting with the full spectrum of fatigue levels. METHODS: The experimental group consisted of 578 chronic fatigue female patients. The measurement design was composed of (1) existing clinical fatigue scales, (2) a hepatic detoxification challenge test, and (3) untargeted proton nuclear magnetic resonance (1H-NMR) procedure to generate metabolomics data. Data analysed via an in-house Matlab script that combines functions from a Statistics and a PLS Toolbox. RESULTS: Multivariate analysis of the original 459 profiled 1H-NMR bins for the low (control) and high (patient) fatigue groups indicated complete separation following the detoxification experimental challenge. Important bins identified from the 1H-NMR spectra provided quantitative metabolite information on the detoxification challenge for the fatigue groups. CONCLUSIONS: Untargeted 1H-NMR metabolomics proved its applicability as a global profiling tool to reveal the impact of toxicological interventions in chronic fatigue patients. No clear potential biomarker emerged from this study, but the quantitative profile of the phase II biotransformation products provide a practical visible effect directing to up-regulation of crucial phase II enzyme systems in the high fatigue group in response to a high xenobiotic-load.


Assuntos
Síndrome de Fadiga Crônica/metabolismo , Fadiga/metabolismo , Adulto , Biomarcadores/urina , Fadiga/urina , Síndrome de Fadiga Crônica/urina , Feminino , Humanos , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Pessoa de Meia-Idade , Análise Multivariada , Qualidade de Vida
7.
R Soc Open Sci ; 6(5): 190205, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31218060

RESUMO

Gold nanoparticles provide a user-friendly and efficient surface for immobilization of enzymes and proteins. In this paper, we present a novel approach for enzyme bioconjugation to gold nanostars (AuNSs). AuNSs were modified with l-cysteine (Cys) and covalently bound to N-hydroxysulfosuccinimide (sulfo-NHS) activated intermediate glucose oxidase (GOx) to fabricate a stable and sensitive AuNSs-Cys-GOx bioconjugate complex. Such a strategy has the potential for increased attachment affinity without protein adsorption onto the AuNSs surface. Good dispersity in buffer suspension was observed, as well as stability in high ionic environments. Using the AuNSs-Cys-GOx bioconjugates showed greater sensitivity in the measuring of low concentrations of glucose based on plasmonic and colorimetric detection. Such a novel approach for enzyme immobilization can lead to AuNSs-Cys-GOx bioconjugate complexes that can be used as catalytic nanodevices in nanobiosensors based on oxidases in biomedical applications.

8.
Metabolomics ; 15(4): 54, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30919098

RESUMO

INTRODUCTION: Fibromyalgia syndrome (FMS) is a chronic pain syndrome. Previous analyses of untargeted metabolomics data indicated altered metabolic profile in FMS patients. OBJECTIVES: We report a semi-targeted explorative metabolomics study on the urinary metabolite profile of FMS patients; exploring the potential of urinary metabolite information to augment existing medical diagnosis. METHODS: All cases were females. Patients had a medical history of persistent FMS (n = 18). Control groups were first-generation family members of the patients (n = 11), age-related individuals without indications of FMS (n = 10), and healthy, young (18-22 years) individuals (n = 41). The biofluid investigated was early morning urine samples. Data generation was done through gas chromatography-mass spectrometry (GC-MS) analysis and data processing and analyses were performed using Matlab, R, SPSS and SAS software. RESULTS: Quantitative analysis revealed the presence of 196 metabolites. Unsupervised and supervised multivariate analyses distinguished all three control groups and the FMS patients, which could be related to 14 significantly increased metabolites. These metabolites are associated with energy metabolism, digestion and metabolism of carbohydrates and other host and gut metabolites. CONCLUSIONS: Overall, urinary metabolite profiles in the FMS patients suggest: (1) energy utilization is a central aspect of this pain disorder, (2) dysbiosis seems to prevail in FMS patients, indicated by disrupted microbiota metabolites, supporting the model that microbiota may alter brain function through the gut-brain axis, with the gut being a gateway to generalized pain, and (3) screening of urine from FMS is an avenue to explore for adding non-invasive clinical information for diagnosis and treatment of FMS.


Assuntos
Disbiose/metabolismo , Fibromialgia/metabolismo , Fibromialgia/fisiopatologia , Adulto , Biomarcadores/análise , Biomarcadores/urina , Feminino , Fibromialgia/urina , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Metaboloma/fisiologia , Metabolômica/métodos , Pessoa de Meia-Idade , Análise Multivariada , Adulto Jovem
9.
Biochim Biophys Acta Mol Basis Dis ; 1865(1): 98-106, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391276

RESUMO

Leigh syndrome is one of the most common childhood-onset neurometabolic disorders resulting from a primary oxidative phosphorylation dysfunction and affecting mostly brain tissues. Ndufs4-/- mice have been widely used to study the neurological responses in this syndrome, however the reason why these animals do not display strong muscle involvement remains elusive. We combined biochemical strategies and multi-platform metabolomics to gain insight into the metabolism of both glycolytic (white quadriceps) and oxidative (soleus) skeletal muscles from Ndufs4-/- mice. Enzyme assays confirmed severely reduced (80%) CI activity in both Ndufs4-/- muscle types, compared to WTs. No significant alterations were evident in other respiratory chain enzyme activities; however, Ndufs4-/- solei displayed moderate decreases in citrate synthase (12%) and CIII (18%) activities. Through hypothesis-generating metabolic profiling, we provide the first evidence of adaptive responses to CI dysfunction involving non-classical pathways fueling the ubiquinone (Q) cycle. We report a respective 48 and 34 discriminatory metabolites between Ndufs4-/- and WT white quadriceps and soleus muscles, among which the most prominent alterations indicate the involvement of the glycerol-3-phosphate shuttle, electron transfer flavoprotein system, CII, and proline cycle in fueling the Q cycle. By restoring the electron flux to CIII via the Q cycle, these adaptive mechanisms could maintain adequate oxidative ATP production, despite CI deficiency. Taken together, our results shed light on the underlying pathogenic mechanisms of CI dysfunction in skeletal muscle. Upon further investigation, these pathways could provide novel targets for therapeutic intervention in CI deficiency and potentially lead to the development of new treatment strategies.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Metabolômica , Músculo Esquelético/metabolismo , Ubiquinona/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Animais , Complexo I de Transporte de Elétrons/genética , Flavoproteínas/metabolismo , Glicólise , Doença de Leigh , Masculino , Camundongos , Camundongos Knockout , Doenças Mitocondriais , Modelos Animais , Oxirredução , Fosforilação Oxidativa
10.
Nanotoxicology ; 12(3): 251-262, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29392969

RESUMO

Studies on the safety of gold nanoparticles (GNPs) are plentiful due to their successful application in drug delivery and treatment of diseases in trials. Cytotoxicity caused by GNPs has been studied on the physiological and biochemical level; yet, the effect of GNPs (particularly gold nano-spheres) on the metabolome of living organisms remains understudied. In this investigation, metabolomics was used to comprehensively study the metabolic alterations in HepG2 cells caused by GNPs; and to investigate the role of representative GNP coatings. GNPs were synthesized, coated and characterized before use on HepG2 cell cultures. Cells were treated for 3 h with citrate-, poly-(sodiumsterene sulfunate)-, and poly-vinylpyrrolidone (PVP)-capped GNPs, respectively. The internalization of the different GNPs and their effect on mitochondrial respiration and the metabolome were studied. Results indicated that the PVP-capped GNPs internalized more and also caused a more observable effect on the metabolome. Conversely, it was the citrate- and poly-(sodiumsterene sulfunate) coated particles that influenced ATP production in addition to the metabolomic changes. A holistic depletion of intracellular metabolites was observed regardless of GNP coating, which hints to the binding of certain metabolites to the particles.


Assuntos
Ouro/toxicidade , Metaboloma/efeitos dos fármacos , Metabolômica , Nanopartículas Metálicas/toxicidade , Ácido Cítrico/química , Ouro/química , Células Hep G2 , Humanos , Nanopartículas Metálicas/química , Mitocôndrias/efeitos dos fármacos , Povidona/química
11.
BMC Neurol ; 17(1): 88, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28490352

RESUMO

BACKGROUND: Fibromyalgia syndrome (FMS) is a chronic pain syndrome. A plausible pathogenesis of the disease is uncertain and the pursuit of measurable biomarkers for objective identification of affected individuals is a continuing endeavour in FMS research. Our objective was to perform an explorative metabolomics study (1) to elucidate the global urinary metabolite profile of patients suffering from FMS, and (2) to explore the potential of this metabolite information to augment existing medical practice in diagnosing the disease. METHODS: We selected patients with a medical history of persistent FMS (n = 18), who described their recent state of the disease through the Fibromyalgia Impact Questionnaire (FIQR) and an in-house clinical questionnaire (IHCQ). Three control groups were used: first-generation family members of the patients (n = 11), age-related individuals without any indications of FMS or related conditions (n = 10), and healthy young (18-22 years) individuals (n = 20). All subjects were female and the biofluid under investigation was urine. Correlation analysis of the FIQR showed the FMS patients represented a well-defined disease group for this metabolomics study. Spectral analyses of urine were conducted using a 500 MHz 1H nuclear magnetic resonance (NMR) spectrometer; data processing and analyses were performed using Matlab, R, SPSS and SAS software. RESULTS AND DISCUSSION: Unsupervised and supervised multivariate analyses distinguished all three control groups and the FMS patients, and significant increases in metabolites related to the gut microbiome (hippuric, succinic and lactic acids) were observed. We have developed an algorithm for the diagnosis of FMS consisting of three metabolites - succinic acid, taurine and creatine - that have a good level of diagnostic accuracy (Receiver Operating Characteristic (ROC) analysis - area under the curve 90%) and on the pain and fatigue symptoms for the selected FMS patient group. CONCLUSION: Our data and comparative analyses indicated an altered metabolic profile of patients with FMS, analytically detectable within their urine. Validation studies may substantiate urinary metabolites to supplement information from medical assessment, tender-point measurements and FIQR questionnaires for an improved objective diagnosis of FMS.


Assuntos
Fibromialgia/diagnóstico , Espectroscopia de Ressonância Magnética , Metabolômica/métodos , Inquéritos e Questionários , Adolescente , Adulto , Biomarcadores/metabolismo , Estudos de Casos e Controles , Fadiga/etiologia , Feminino , Humanos , Pessoa de Meia-Idade , Análise Multivariada , Dor/etiologia , Medição da Dor , Curva ROC , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA