Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(8): 6869-6884, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35252680

RESUMO

The present work demonstrated a novel Cleome simplicifolia-mediated green fabrication of nickel oxide nanoparticles (NiO NPs) to explore in vitro toxicity in Bm-17 and Labeo rohita liver cells. As-fabricated bioinspired NiO NPs were characterized by several analytical techniques. X-ray diffraction (XRD) revealed a crystalline face-centered-cubic structure. Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible diffuse reflectance spectroscopy (UV-DRS), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) confirmed NiO formation. The chemical composition was confirmed by energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy. Brunauer-Emmett-Teller (BET) revealed the mesoporous nature. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the formation of 97 nm diameter nanospheres formed due to the congregation of 10 nm size particles. Atomic force microscopy (AFM) revealed the nearly isotropic behavior of NiO NPs. Further, a molecular docking study was performed to explore their toxicity by binding with genetic molecules, and it was found that the docking energy was about -9.65284 kcal/mol. On evaluating the in vitro toxicity of NiO NPs for Bm-17 cells, the study showed that when cells were treated with a high concentration of NPs, cells were affected severely by toxicity, while at a lower concentration, cells were affected slightly. Further, on using 50 µg/mL, quick deaths of cells were observed due to the formation of more vacuoles in the cells. The DNA degradation study revealed that NiO NPs are significantly responsible for DNA degradation. For further confirmation, trypan blue assay was observed for cell viability, and morphological assessment was performed using inverted tissue culture microscopy. Further, the cytotoxicity of NiO NPs in L. rohita liver cells was studied. No toxicity was observed at 1 mg/L of NiO NPs; however, when the concentration was 30 and 90 mg/L, dark and shrank hepatic parenchyma was observed. Hence, the main cause of cell lysis is the increased vacuolization in the cells. Thus, the present study suggests that the cytotoxicity induced by NiO NPs could be used in anticancer drugs.

2.
J Mater Chem B ; 8(35): 7956-7965, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32756674

RESUMO

Hexestrol is a non-steroidal estrogen which causes carcinogenic effects in animals. It is therefore important to develop sensitive and selective test methods for its early detection. Herein, we report the development of an electrochemical sensor to detect hexestrol in ultralow concentrations. In order to devise a simple and cost-effective hexestrol sensing electrode, attention is paid to the development of biomass-derived porous carbon (PCB) with large surface area and suitable porosity to immobilize ruthenium oxide nanoparticles (RuO2 NPs, 3-4 nm). The leftover Citrus limetta pulp is chosen as waste biomass since it has N and O based chemical species. Structural, morphological and compositional analysis of PCB and RuO2@PCB revealed well-dispersed RuO2 NPs over the PCB surface. High loading (5.27 at%) of Ru content is achieved due to the large surface area of PCB. Cyclic voltammetry, chronoamperometry and differential pulse voltammetry results suggest that the RuO2@PCB/ITO electrode is capable of detecting hexestrol concentration (in the range of 1 × 10-7-2 × 10-5 M). The practical application of hexestrol detection in milk samples demonstrates the recovery from 96.28 to 101%.


Assuntos
Carbono/química , Citrus/química , Eletroquímica/instrumentação , Hexestrol/análise , Nanopartículas/química , Compostos de Rutênio/química , Biomassa , Análise Custo-Benefício , Eletroquímica/economia , Eletrodos , Hexestrol/química , Porosidade , Propriedades de Superfície
3.
Dalton Trans ; 49(4): 1007-1010, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31934704

RESUMO

A triazine-cored covalent organic polymer (COP) was designed and synthesized via amine linkages under ambient conditions. The novel architecture of the COP was fully characterized via spectroscopic and analytical techniques. The present COP demonstrates a quick, portable and reversible chromogenic response towards noxious HCl vapours.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 212: 94-104, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30616168

RESUMO

This work presents the synthesis, structural characterization and biological affinity of the newly synthesized copper(II) complexes with the first antibacterial quinolone drug nalidixic acid (nal) or N-donor ligand 2,2'­dipyridylamine (bipyam). [Cu(II)(nal)(bipyam)Cl], (2) reveals a distorted square pyramidal based geometry in Cu(II) atom confirmed by X-ray crystallography technique. The theoretical stabilities and optimized structures of the complex were obtained from DFT calculations. The ability of the complexes to bind with calf thymus DNA (CT DNA) were investigated by electronic absorption, fluorescence, circular dichroism, and viscosity measurements techniques. The experimental results reveal that the complexes strongly interact with CT DNA via intercalative mode but complex 2 exhibits the highest affinity giving Kb=3.91±0.13×106, M-1. The fluorescence spectroscopy measurements show that both complexes have the superior ability to the replacement of EtBr from DNA-bound EtBr solution and bind to DNA through intercalative mode. Both complex also shows the superior affinity towards proteins with comparatively high binding constant values which have been further revealed by fluorescence spectroscopy measurements. Molecular docking analysis indicates that the interaction of the complexes and proteins are stabilized by hydrogen bonding and hydrophobic interaction. Furthermore, the results of in vitro cytotoxicity reveal that the complex 2 has excellent cytotoxicity than 1 against human breast cancer cell lines (MCF-7).


Assuntos
2,2'-Dipiridil/análogos & derivados , Complexos de Coordenação/química , Cobre/química , DNA/química , Simulação de Acoplamento Molecular , Ácido Nalidíxico/química , 2,2'-Dipiridil/síntese química , 2,2'-Dipiridil/química , Morte Celular , Dicroísmo Circular , Complexos de Coordenação/síntese química , Teoria da Densidade Funcional , Humanos , Cinética , Células MCF-7 , Conformação Molecular , Ligação Proteica , Soroalbumina Bovina/metabolismo , Albumina Sérica Humana/metabolismo , Solubilidade , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Viscosidade
5.
RSC Adv ; 9(2): 753-760, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35517582

RESUMO

A series of new symmetrical tripodal molecules 1a-4b with a central benzene scaffold substituted with methyl/ethyl groups and three benzimidazolyl units having a bithiophene/biphenyl/5-alkylthiophene motif at the 2-position via a -CH2- unit were synthesized and characterized by elemental analysis, HR-MS, and NMR spectroscopy. NMR spectral data reveal that all molecules adopt a cyclic benzene trimer (CBT) using three benzimidazolyl units. Intramolecular cooperative edge-to-face C-H⋯π interactions stabilize the CBT motif in solution and are strong in ethyl substituted molecules (1b-4b) compared to methyl substituted (1a-4a) ones. However, the strength of the CBT unit in the tripodal molecule is independent of the length of the substituent at the 2-position of the benzimidazolyl unit. The relative 1H NMR chemical shift calculated at the MPW1PW91/6-311+G(d,p) level of theory corroborates the experimental values, and the calculations predict the distribution of the structures into syn isomers. The relative change in the NMR chemical shift is justified by the relative change in the magnitude of the (3,+3) critical point (CP) in the molecular electrostatic potential (MESP) topography. Also, a linear correlation of the intramolecular C-H⋯π interactions evaluated at M062X/6-311+G(d,p) with the relative NMR chemical shift suggest the latter as a measure of intramolecular cooperativity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA