Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 207(2): 493-504, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34215653

RESUMO

The availability of Ags on the surface of tumor cells is crucial for the efficacy of cancer immunotherapeutic approaches using large molecules, such as T cell bispecific Abs (TCBs). Tumor Ags are processed through intracellular proteasomal protein degradation and are displayed as peptides on MHC class I (MHC I). Ag recognition through TCRs on the surface of CD8+ T cells can elicit a tumor-selective immune response. In this article, we show that proteolysis-targeting chimeras (PROTACs) that target bromo- and extraterminal domain proteins increase the abundance of the corresponding target-derived peptide Ags on MHC I in both liquid and solid tumor-derived human cell lines. This increase depends on the engagement of the E3 ligase to bromo- and extraterminal domain protein. Similarly, targeting of a doxycycline-inducible Wilms tumor 1 (WT1)-FKBP12F36V fusion protein, by a mutant-selective FKBP12F36V degrader, increases the presentation of WT1 Ags in human breast cancer cells. T cell-mediated response directed against cancer cells was tested on treatment with a TCR-like TCB, which was able to bridge human T cells to a WT1 peptide displayed on MHC I. FKBP12F36V degrader treatment increased the expression of early and late activation markers (CD69, CD25) in T cells; the secretion of granzyme ß, IFN-γ, and TNF-α; and cancer cell killing in a tumor-T cell coculture model. This study supports harnessing targeted protein degradation in tumor cells, for modulation of T cell effector function, by investigating for the first time, to our knowledge, the potential of combining a degrader and a TCB in a cancer immunotherapy setting.


Assuntos
Anticorpos Biespecíficos/imunologia , Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Quimera/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Ativação Linfocitária/imunologia , Neoplasias/imunologia , Antígenos de Neoplasias/imunologia , Biomarcadores Tumorais/imunologia , Linhagem Celular Tumoral , Epitopos de Linfócito T/imunologia , Humanos , Proteólise , Receptores de Antígenos de Linfócitos T/imunologia
2.
PLoS One ; 12(2): e0171185, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28178326

RESUMO

Fibroblast growth factor 19 (FGF19) is a gut-derived peptide hormone that is produced following activation of Farnesoid X Receptor (FXR). FGF19 is secreted and signals to the liver, where it contributes to the homeostasis of bile acid (BA), lipid and carbohydrate metabolism. FGF19 is a promising therapeutic target for the metabolic syndrome and cholestatic diseases, but enthusiasm for its use has been tempered by FGF19-mediated induction of proliferation and hepatocellular carcinoma. To inform future rational design of FGF19-variants, we have conducted temporal quantitative proteomic and gene expression analyses to identify FGF19-targets related to metabolism and proliferation. Mice were fasted for 16 hours, and injected with human FGF19 (1 mg/kg body weight) or vehicle. Liver protein extracts (containing "light" lysine) were mixed 1:1 with a spike-in protein extract from 13C6-lysine metabolically labelled mouse liver (containing "heavy" lysine) and analysed by LC-MS/MS. Our analyses provide a resource of FGF19 target proteins in the liver. 189 proteins were upregulated (≥ 1.5 folds) and 73 proteins were downregulated (≤ -1.5 folds) by FGF19. FGF19 treatment decreased the expression of proteins involved in fatty acid (FA) synthesis, i.e., Fabp5, Scd1, and Acsl3 and increased the expression of Acox1, involved in FA oxidation. As expected, FGF19 increased the expression of proteins known to drive proliferation (i.e., Tgfbi, Vcam1, Anxa2 and Hdlbp). Importantly, many of the FGF19 targets (i.e., Pdk4, Apoa4, Fas and Stat3) have a dual function in both metabolism and cell proliferation. Therefore, our findings challenge the development of FGF19-variants that fully uncouple metabolic benefit from mitogenic potential.


Assuntos
Metabolismo Energético , Fatores de Crescimento de Fibroblastos/farmacologia , Fígado/metabolismo , Proteoma , Proteômica , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Expressão Gênica , Humanos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Proteômica/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes
3.
PLoS One ; 9(8): e104449, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25116592

RESUMO

BACKGROUND & AIMS: Liver regeneration (LR) is a valuable model for studying mechanisms modulating hepatocyte proliferation. Nuclear receptors (NRs) are key players in the control of cellular functions, being ideal modulators of hepatic proliferation and carcinogenesis. METHODS & RESULTS: We used a previously validated RT-qPCR platform to profile modifications in the expression of all 49 members of the NR superfamily in mouse liver during LR. Twenty-nine NR transcripts were significantly modified in their expression during LR, including fatty acid (peroxisome proliferator-activated receptors, PPARs) and oxysterol (liver X receptors, Lxrs) sensors, circadian masters RevErbα and RevErbß, glucocorticoid receptor (Gr) and constitutive androxane receptor (Car). In order to detect the NRs that better characterize proliferative status vs. proliferating liver, we used the novel Random Forest (RF) analysis to selected a trio of down-regulated NRs (thyroid receptor alpha, Trα; farsenoid X receptor beta, Fxrß; Pparδ) as best discriminators of the proliferating status. To validate our approach, we further studied PPARδ role in modulating hepatic proliferation. We first confirmed the suppression of PPARδ both in LR and human hepatocellular carcinoma at protein level, and then demonstrated that PPARδ agonist GW501516 reduces the proliferative potential of hepatoma cells. CONCLUSIONS: Our data suggest that NR transcriptome is modulated in proliferating liver and is a source of biomarkers and bona fide pharmacological targets for the management of liver disease affecting hepatocyte proliferation.


Assuntos
Carcinoma Hepatocelular/genética , Hepatócitos/metabolismo , Neoplasias Hepáticas/genética , Regeneração Hepática/genética , Receptores Citoplasmáticos e Nucleares/genética , Animais , Carcinoma Hepatocelular/metabolismo , Linhagem Celular , Proliferação de Células , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Receptores Citoplasmáticos e Nucleares/metabolismo , Transcriptoma
4.
Mol Cell Endocrinol ; 368(1-2): 108-19, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22789748

RESUMO

A comprehensive understanding of the pathways underlying hepatocyte turnover and liver regeneration is essential for the development of innovative and effective therapies in the management of chronic liver disease, and the prevention of hepatocellular carcinoma (HCC) in cirrhosis. Nuclear receptors (NRs) are master transcriptional regulators of liver development, differentiation and function. NRs have been implicated in the modulation of hepatocyte priming and proliferation in regenerating liver, chronic hepatitis and HCC development. In this review, we focus on NRs and their pathways regulating hepatocyte proliferation and liver regeneration, with a perspective view on NRs as candidate biomarkers and novel pharmacological targets in the management of liver disease and HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Regeneração Hepática , Receptores Citoplasmáticos e Nucleares/fisiologia , Animais , Ácidos e Sais Biliares/fisiologia , Carcinoma Hepatocelular/patologia , Proliferação de Células , Regulação da Expressão Gênica , Hepatócitos/fisiologia , Humanos , Lipídeos/fisiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA