Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 14(1): 190, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827658

RESUMO

BACKGROUND: Plant-based mosquito control methods may use as a supplementary malaria vector control strategy. This study aimed to evaluate the effect of smoking ethno-medicinal plants on indoor density and feeding activity of malaria vectors at early hours of the night and its residual effect after midnight in southern Ethiopia. METHODS: Both field and tent trials were conducted to evaluate the impact of smoking Juniperus procera leaves, Eucalyptus globulus seeds and Olea europaea leaves in Kolla Shara Village from July 2016 to February 2017. For the field trial, five grass-thatched traditional huts (three for ethno-medicinal plants and two as control [only charcoal smoking and non-charcoal smoking]) were used. Indoor host-seeking mosquitoes were collected by CDC light traps. A Latin square design was employed to minimize the bias due to the variation in house location and different sampling nights. For the tent experiment, 25 3-5-day-old starved wild female Anopheles mosquitoes reared from the larvae were released into the tents where a calf was tethered at the mid-point of each tent. RESULTS: A total of 614 Anopheles mosquitoes belonging to 5 species were collected from 5 huts, of which 93.4% was An. arabiensis; O. europaea, E. globulus and J. procera reduced the indoor density of An. arabiensis, with the mean percentage drop of 80%, 73% and 70%, respectively. In the tent trial, smoking of these plants had significant knockdown effects and inhibited feeding on the calves (F = 383.5, DF = 3, P < 0.01). The mean knockdown effect due to O. europaea was relatively high (17.7 ± 0.54; 95% CI 16.8-18.6), while it was only 0.9 ± 0.1 (95% CI 0.29-1.52) in the control tents. All the test plants used in the tent trial caused significantly inhibited feeding activity of An. arabiensis on the host (F = 383.5, DF = 3, P < 0.01). About 94.5%, 89.5% and 86% of mosquitoes were unfed because of the smoking effect of O. europaea, E. globulus and J. procera, respectively, whereas only 19.5% were unfed in the control tent. CONCLUSIONS: Smoking ethno-medicinal plant materials reduced indoor density of malaria vectors and inhibited feeding on calves inside the tents. Thus, plant-based mosquito control methods may play a vital role in reducing mosquito bites in the early hours of the night and thereby reduce residual malaria transmission.


Assuntos
Anopheles/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Repelentes de Insetos/farmacologia , Repelentes de Insetos/normas , Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/fisiologia , Plantas Medicinais/química , Animais , Etiópia , Feminino , Habitação , Repelentes de Insetos/análise , Malária/transmissão , Folhas de Planta/química , Sementes/química , Fatores de Tempo
2.
PLoS Negl Trop Dis ; 14(3): e0007947, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32196501

RESUMO

BACKGROUND: Cutaneous leishmaniasis (CL) is a major public health concern in Ethiopia. However, knowledge about the complex zoonotic transmission cycle is limited, hampering implementation of control strategies. We explored the feeding behavior and activity of the vector (Phlebotomus pedifer) and studied the role of livestock in CL transmission in southwestern Ethiopia. METHODS: Blood meal origins of engorged sand flies were determined by sequencing host DNA. A host choice experiment was performed to assess the feeding preference of P. pedifer when humans and hyraxes are equally accessible. Ear and nose biopsies from livestock were screened for the presence of Leishmania parasites. Sand flies were captured indoor and outdoor with human landing catches and CDC light traps to determine at which time and where P. pedifer is mostly active. PRINCIPAL FINDINGS: A total of 180 P. pedifer sand flies were found to bite hosts of 12 genera. Humans were the predominant blood meal source indoors (65.9%, p < 0.001), while no significant differences were determined outdoors and in caves. In caves, hyraxes were represented in blood meals equally as humans (45.5% and 42.4%, respectively), but the host choice experiment revealed that sand flies have a significant preference for feeding on hyraxes (p = 0.009). Only a single goat nose biopsy from 412 animal samples was found with Leishmania RNA. We found that P. pedifer is predominantly endophagic (p = 0.003), but occurs both indoors and outdoors. A substantial number of sand flies was active in the early evening, which increased over time reaching its maximum around midnight. CONCLUSION: In contrast to earlier suggestions of exclusive zoonotic Leishmania transmission, we propose that there is also human-to-human transmission of CL in southwestern Ethiopia. Livestock does not play a role in CL transmission and combined indoor and outdoor vector control measures at night are required for efficient vector control.


Assuntos
Reservatórios de Doenças/parasitologia , Comportamento Alimentar , Leishmania/isolamento & purificação , Gado/parasitologia , Phlebotomus/fisiologia , Phlebotomus/parasitologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Transmissão de Doença Infecciosa , Etiópia , Feminino , Humanos , Leishmaniose Cutânea/transmissão , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA