Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Br J Anaesth ; 129(6): 879-888, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36208971

RESUMO

BACKGROUND: A major bottleneck to the introduction of noninvasive presymptomatic diagnostic tests for the pharmacogenetic disorder malignant hyperthermia is the lack of functional data for associated variants. METHODS: We screened 50 genes having a potential role in skeletal muscle calcium homeostasis using the HaloPlex™ (Agilent Technologies, Santa Clara, CA, USA) target enrichment system and next-generation sequencing. Twenty-one patients with a history of a clinical malignant hyperthermia reaction together with a positive in vitro contracture test were included. Eight variants in RYR1 were subsequently introduced into the cDNA for the human ryanodine receptor gene and tested in cultured human embryonic kidney (HEK293) cells for their effect on calcium release from intracellular stores in response to the ryanodine receptor-1 agonist 4-chloro-m-cresol using fura-2 as calcium indicator. Each variant was subjected to in silico curation using the European Malignant Hyperthermia Group scoring matrix and ClinGen RYR1 variant curation expert panel guidelines. RESULTS: Potentially causative RYR1 variants were identified in 15 patients. Of these, two families carried two RYR1 variants, five variants had been previously reported as 'pathogenic', two variants had been previously reported as 'likely benign', and eight were of 'uncertain significance'. Of these eight variants, four showed hypersensitivity to 4-chloro-m-cresol. Three variants were reclassified as either 'pathogenic' or 'likely pathogenic'. Two were classified as 'benign', whilst three remained of 'uncertain significance'. CONCLUSIONS: Three (p.Tyr1711Cys, p.Val2280Ile, and p.Arg4737Gln) additional variants can be added to the list of RYR1 disease-associated variants managed by the European Malignant Hyperthermia Group. These can therefore be used diagnostically in the future. Three variants (p.Glu2348Gly, p.Asn2634Lys, and p.Arg3629Trp) that remained classified as of uncertain significance require further family studies or a different functional test to determine clinical relevance in malignant hyperthermia.


Assuntos
Hipertermia Maligna , Canal de Liberação de Cálcio do Receptor de Rianodina , Humanos , Cálcio/metabolismo , Células HEK293 , Hipertermia Maligna/diagnóstico , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
2.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055180

RESUMO

Pyridine Nucleotide-Disulfide Oxidoreductase Domain 2 (PYROXD2; previously called YueF) is a mitochondrial inner membrane/matrix-residing protein and is reported to regulate mitochondrial function. The clinical importance of PYROXD2 has been unclear, and little is known of the protein's precise biological function. In the present paper, we report biallelic variants in PYROXD2 identified by genome sequencing in a patient with suspected mitochondrial disease. The child presented with acute neurological deterioration, unresponsive episodes, and extreme metabolic acidosis, and received rapid genomic testing. He died shortly after. Magnetic resonance imaging (MRI) brain imaging showed changes resembling Leigh syndrome, one of the more common childhood mitochondrial neurological diseases. Functional studies in patient fibroblasts showed a heightened sensitivity to mitochondrial metabolic stress and increased mitochondrial superoxide levels. Quantitative proteomic analysis demonstrated decreased levels of subunits of the mitochondrial respiratory chain complex I, and both the small and large subunits of the mitochondrial ribosome, suggesting a mitoribosomal defect. Our findings support the critical role of PYROXD2 in human cells, and suggest that the biallelic PYROXD2 variants are associated with mitochondrial dysfunction, and can plausibly explain the child's clinical presentation.


Assuntos
Doença de Leigh/diagnóstico por imagem , Mutação de Sentido Incorreto , Proteínas Supressoras de Tumor/genética , Evolução Fatal , Humanos , Lactente , Doença de Leigh/genética , Imageamento por Ressonância Magnética , Masculino , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Proteômica , Análise de Sequência de RNA , Proteínas Supressoras de Tumor/química , Sequenciamento Completo do Genoma
3.
Hum Mol Genet ; 31(3): 362-375, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34494102

RESUMO

The nuclear pore complex (NPC) is a multi-protein complex that regulates the trafficking of macromolecules between the nucleus and cytoplasm. Genetic variants in components of the NPC have been shown to cause a range of neurological disorders, including intellectual disability and microcephaly. Translocated promoter region, nuclear basket protein (TPR) is a critical scaffolding element of the nuclear facing interior of the NPC. Here, we present two siblings with biallelic variants in TPR who present with a phenotype of microcephaly, ataxia and severe intellectual disability. The variants result in a premature truncation variant, and a splice variant leading to a 12-amino acid deletion respectively. Functional analyses in patient fibroblasts demonstrate significantly reduced TPR levels, and decreased TPR-containing NPC density. A compensatory increase in total NPC levels was observed, and decreased global RNA intensity in the nucleus. The discovery of variants that partly disable TPR function provide valuable insight into this essential protein in human disease, and our findings suggest that TPR variants are the cause of the siblings' neurological disorder.


Assuntos
Deficiência Intelectual , Microcefalia , Humanos , Deficiência Intelectual/genética , Microcefalia/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/genética
4.
Neurobiol Dis ; 155: 105370, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33905871

RESUMO

CDKL5 deficiency disorder (CDD) is a rare neurodevelopmental disorder caused by pathogenic variants in the Cyclin-dependent kinase-like 5 (CDKL5) gene, resulting in dysfunctional CDKL5 protein. It predominantly affects females and causes seizures in the first few months of life, ultimately resulting in severe intellectual disability. In the absence of targeted therapies, treatment is currently only symptomatic. CDKL5 is a serine/threonine kinase that is highly expressed in the brain, with a critical role in neuronal development. Evidence of mitochondrial dysfunction in CDD is gathering, but has not been studied extensively. We used human patient-derived induced pluripotent stem cells with a pathogenic truncating mutation (p.Arg59*) and CRISPR/Cas9 gene-corrected isogenic controls, differentiated into neurons, to investigate the impact of CDKL5 mutation on cellular function. Quantitative proteomics indicated mitochondrial defects in CDKL5 p.Arg59* neurons, and mitochondrial bioenergetics analysis confirmed decreased activity of mitochondrial respiratory chain complexes. Additionally, mitochondrial trafficking velocity was significantly impaired, and there was a higher percentage of stationary mitochondria. We propose mitochondrial dysfunction is contributing to CDD pathology, and should be a focus for development of targeted treatments for CDD.


Assuntos
Metabolismo Energético/fisiologia , Síndromes Epilépticas/genética , Síndromes Epilépticas/metabolismo , Dinâmica Mitocondrial/fisiologia , Neurônios/metabolismo , Espasmos Infantis/genética , Espasmos Infantis/metabolismo , Adolescente , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Células Cultivadas , Pré-Escolar , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lactente , Masculino , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteômica/métodos
5.
Temperature (Austin) ; 3(2): 328-339, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27857962

RESUMO

Malignant hyperthermia manifests as a rapid and sustained rise in temperature in response to pharmacological triggering agents, e.g. inhalational anesthetics and the muscle relaxant suxamethonium. Other clinical signs include an increase in end-tidal CO2, increased O2 consumption, as well as tachycardia, and if untreated a malignant hyperthermia episode can result in death. The metabolic changes are caused by dysregulation of skeletal muscle Ca2+ homeostasis, resulting from a defective ryanodine receptor Ca2+ channel, which resides in the sarcoplasmic reticulum and controls the flux of Ca2+ ions from intracellular stores to the cytoplasm. Most genetic variants associated with susceptibility to malignant hyperthermia occur in the RYR1 gene encoding the ryanodine receptor type 1. While malignant hyperthermia susceptibility can be diagnosed by in vitro contracture testing of skeletal muscle biopsy tissue, it is advantageous to use DNA testing. Currently only 35 of over 400 potential variants in RYR1 have been classed as functionally causative of malignant hyperthermia and thus can be used for DNA diagnostic tests. Here we describe functional analysis of 2 RYR1 variants (c. 7042_7044delCAG, p.ΔGlu2348 and c.641C>T, p.Thr214Met) that occur in the same malignant hyperthermia susceptible family. The p.Glu2348 deletion, causes hypersensitivity to ryanodine receptor agonists using in vitro analysis of cloned human RYR1 cDNA expressed in HEK293T cells, while the Thr214Met substitution, does not appear to significantly alter sensitivity to agonist in the same system. We suggest that the c. 7042_7044delCAG, p.ΔGlu2348 RYR1 variant could be added to the list of diagnostic mutations for susceptibility to malignant hyperthermia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA