Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 628(8006): 110-116, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570715

RESUMO

The emergence of biopolymer building blocks is a crucial step during the origins of life1-6. However, all known formation pathways rely on rare pure feedstocks and demand successive purification and mixing steps to suppress unwanted side reactions and enable high product yields. Here we show that heat flows through thin, crack-like geo-compartments could have provided a widely available yet selective mechanism that separates more than 50 prebiotically relevant building blocks from complex mixtures of amino acids, nucleobases, nucleotides, polyphosphates and 2-aminoazoles. Using measured thermophoretic properties7,8, we numerically model and experimentally prove the advantageous effect of geological networks of interconnected cracks9,10 that purify the previously mixed compounds, boosting their concentration ratios by up to three orders of magnitude. The importance for prebiotic chemistry is shown by the dimerization of glycine11,12, in which the selective purification of trimetaphosphate (TMP)13,14 increased reaction yields by five orders of magnitude. The observed effect is robust under various crack sizes, pH values, solvents and temperatures. Our results demonstrate how geologically driven non-equilibria could have explored highly parallelized reaction conditions to foster prebiotic chemistry.


Assuntos
Biopolímeros , Evolução Química , Temperatura Alta , Origem da Vida , Biopolímeros/química , Dimerização , Glicina/química , Concentração de Íons de Hidrogênio , Nucleotídeos/química , Polifosfatos/química , Solventes/química
2.
Nat Chem ; 11(9): 779-788, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31358919

RESUMO

Non-equilibrium conditions must have been crucial for the assembly of the first informational polymers of early life, by supporting their formation and continuous enrichment in a long-lasting environment. Here, we explore how gas bubbles in water subjected to a thermal gradient, a likely scenario within crustal mafic rocks on the early Earth, drive a complex, continuous enrichment of prebiotic molecules. RNA precursors, monomers, active ribozymes, oligonucleotides and lipids are shown to (1) cycle between dry and wet states, enabling the central step of RNA phosphorylation, (2) accumulate at the gas-water interface to drastically increase ribozymatic activity, (3) condense into hydrogels, (4) form pure crystals and (5) encapsulate into protecting vesicle aggregates that subsequently undergo fission. These effects occur within less than 30 min. The findings unite, in one location, the physical conditions that were crucial for the chemical emergence of biopolymers. They suggest that heated microbubbles could have hosted the first cycles of molecular evolution.


Assuntos
Gases/química , Lipídeos/química , Oligonucleotídeos/química , RNA Catalítico/química , RNA/química , Cristalização , Gases/síntese química , Hidrogéis/síntese química , Hidrogéis/química , Fosforilação , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA