Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 5174-5177, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30441505

RESUMO

Permanent implantation of electrodes for prosthetic control is now possible using an osseointegrated implant as a long-term stable communication interface (e-OPRA). The number of myoelectric sites to host such electrodes can be increased by Targeted Muscle Reinnervation (TMR). Traditionally, patients need to wait several months before the TMR signals are strong enough to be recorded by electrodes placed over the skin. In this study, we report the evolution of the TMR myoelectric signals recorded from two subjects via implanted electrodes using e-OPRA, and monitored for up to 48 weeks after surgery. The signals were analyzed with regard to amplitude (signal-to-noise ratio), independence (cross-correlation) and myoelectric pattern recognition (classification accuracy). TMR signals appeared at the first follow-up, one month post-surgery, and developed around 20 dB by the last. Cross-correlation between signals decreased over time and converged to a few percentage points. Classification accuracies were over 97% by the last follow up. These preliminary results suggest that implanted electrodes via the e-OPRA interface allow for an earlier and more effective use of motor signals from TMR sites compared to conventional skin surface electrodes.


Assuntos
Eletrodos Implantados , Membros Artificiais , Eletrodos , Eletromiografia , Humanos , Músculo Esquelético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA