Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Redox Biol ; 73: 103191, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38762951

RESUMO

Activation of inflammation is tightly associated with metabolic reprogramming in macrophages. The iron-containing tetrapyrrole heme can induce pro-oxidant and pro-inflammatory effects in murine macrophages, but has been associated with polarization towards an anti-inflammatory phenotype in human macrophages. In the current study, we compared the regulatory responses to heme and the prototypical Toll-like receptor (TLR)4 ligand lipopolysaccharide (LPS) in human and mouse macrophages with a particular focus on alterations of cellular bioenergetics. In human macrophages, bulk RNA-sequencing analysis indicated that heme led to an anti-inflammatory transcriptional profile, whereas LPS induced a classical pro-inflammatory gene response. Co-stimulation of heme with LPS caused opposing regulatory patterns of inflammatory activation and cellular bioenergetics in human and mouse macrophages. Specifically, in LPS-stimulated murine, but not human macrophages, heme led to a marked suppression of oxidative phosphorylation and an up-regulation of glycolysis. The species-specific alterations in cellular bioenergetics and inflammatory responses to heme were critically dependent on the availability of nitric oxide (NO) that is generated in inflammatory mouse, but not human macrophages. Accordingly, studies with an inducible nitric oxide synthase (iNOS) inhibitor in mouse, and a pharmacological NO donor in human macrophages, reveal that NO is responsible for the opposing effects of heme in these cells. Taken together, the current findings indicate that NO is critical for the immunomodulatory role of heme in macrophages.


Assuntos
Heme , Inflamação , Lipopolissacarídeos , Macrófagos , Óxido Nítrico , Humanos , Heme/metabolismo , Animais , Óxido Nítrico/metabolismo , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Inflamação/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Fosforilação Oxidativa/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Glicólise/efeitos dos fármacos
2.
Int J Mol Sci ; 24(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37569847

RESUMO

Different mutations in the SERPINA1 gene result in alpha-1 antitrypsin (AAT) deficiency and in an increased risk for the development of liver diseases. More than 90% of severe deficiency patients are homozygous for Z (Glu342Lys) mutation. This mutation causes Z-AAT polymerization and intrahepatic accumulation which can result in hepatic alterations leading to steatosis, fibrosis, cirrhosis, and/or hepatocarcinoma. We aimed to investigate lipid status in hepatocytes carrying Z and normal M alleles of the SERPINA1 gene. Hepatic organoids were developed to investigate lipid alterations. Lipid accumulation in HepG2 cells overexpressing Z-AAT, as well as in patient-derived hepatic organoids from Pi*MZ and Pi*ZZ individuals, was evaluated by Oil-Red staining in comparison to HepG2 cells expressing M-AAT and liver organoids from Pi*MM controls. Furthermore, mass spectrometry-based lipidomics analysis and transcriptomic profiling were assessed in Pi*MZ and Pi*ZZ organoids. HepG2 cells expressing Z-AAT and liver organoids from Pi*MZ and Pi*ZZ patients showed intracellular accumulation of AAT and high numbers of lipid droplets. These latter paralleled with augmented intrahepatic lipids, and in particular altered proportion of triglycerides, cholesterol esters, and cardiolipins. According to transcriptomic analysis, Pi*ZZ organoids possess many alterations in genes and cellular processes of lipid metabolism with a specific impact on the endoplasmic reticulum, mitochondria, and peroxisome dysfunction. Our data reveal a relationship between intrahepatic accumulation of Z-AAT and alterations in lipid homeostasis, which implies that liver organoids provide an excellent model to study liver diseases related to the mutation of the SERPINA1 gene.


Assuntos
Deficiência de alfa 1-Antitripsina , alfa 1-Antitripsina , Humanos , Deficiência de alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/complicações , Lipídeos , Cirrose Hepática/etiologia , Organoides , alfa 1-Antitripsina/genética
3.
J Pers Med ; 12(6)2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35743666

RESUMO

Relapsed and refractory (R/r) disease in paediatric acute leukaemia remains the first reason for treatment failure. Advances in molecular characterisation can ameliorate the identification of genetic biomarkers treatment strategies for this disease, especially in high-risk patients. The purpose of this study was to analyse a cohort of R/r children diagnosed with acute lymphoblastic (ALL) or myeloid (AML) leukaemia in order to offer them a targeted treatment if available. Advanced molecular characterisation of 26 patients diagnosed with R/r disease was performed using NGS, MLPA, and RT-qPCR. The clinical relevance of the identified alterations was discussed in a multidisciplinary molecular tumour board (MTB). A total of 18 (69.2%) patients were diagnosed with B-ALL, 4 (15.4%) with T-ALL, 3 (11.5%) with AML and 1 patient (3.8%) with a mixed-phenotype acute leukaemia (MPL). Most of the patients had relapsed disease (88%) at the time of sample collection. A total of 17 patients (65.4%) were found to be carriers of a druggable molecular alteration, 8 of whom (47%) received targeted therapy, 7 (87.5%) of them in addition to hematopoietic stem cell transplantation (HSCT). Treatment response and disease control were achieved in 4 patients (50%). In conclusion, advanced molecular characterisation and MTB can improve treatment and outcome in paediatric R/r acute leukaemias.

5.
Cancers (Basel) ; 13(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540698

RESUMO

Natural killer (NK) cells represent promising tools for cancer immunotherapy. We report the optimization of an NK cell activation-expansion process and its validation on clinical-scale. METHODS: RPMI-1640, stem cell growth medium (SCGM), NK MACS and TexMACS were used as culture mediums. Activated and expanded NK cells (NKAE) were obtained by coculturing total peripheral blood mononuclear cells (PBMC) or CD45RA+ cells with irradiated K562mbIL15-41BBL or K562mbIL21-41BBL. Fold increase, NK cell purity, activation status, cytotoxicity and transcriptome profile were analyzed. Clinical-grade NKAE cells were manufactured in CliniMACS Prodigy. RESULTS: NK MACS and TexMACs achieved the highest NK cell purity and lowest T cell contamination. Obtaining NKAE cells from CD45RA+ cells was feasible although PBMC yielded higher total cell numbers and NK cell purity than CD45RA+ cells. The highest fold expansion and NK purity were achieved by using PBMC and K562mbIL21-41BBL cells. However, no differences in activation and cytotoxicity were found when using either NK cell source or activating cell line. Transcriptome profile showed to be different between basal NK cells and NKAE cells expanded with K562mbIL21-41BBL or K562mbIL15-41BBL. Clinical-grade manufactured NKAE cells complied with the specifications from the Spanish Regulatory Agency. CONCLUSIONS: GMP-grade NK cells for clinical use can be obtained by using different starting cells and aAPC.

6.
Oncotarget ; 7(15): 20068-79, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-26933805

RESUMO

Emerging evidence suggests that BRCA1 pathway contributes to the behavior of sporadic triple negative breast cancer (TNBC), but little is known about the mechanisms underlying this association. Considering the central role that microRNAs (miRNAs) play in gene expression regulation, the aim of this study was to identify miRNAs specifically deregulated in TNBC and investigate their involvement in BRCA1 regulation. Using locked nucleic acid (LNA)-based microarrays, expression levels of 1919 miRNAs were measured in paraffin-embedded tissues from 122 breast tumors and 11 healthy breast tissue samples. Differential miRNA expression was explored among the main subtypes of breast cancer, and 105 miRNAs were identified as specific for triple negative tumors. In silico prediction revealed that miR-498 and miR-187-5p target BRCA1, and these results were confirmed by luciferase reporter assay. While miR-187-5p was found overexpressed in a luminal B cell line, miR-498 was highly expressed in a triple negative cell line, Hs578T, and its expression was negatively correlated with the levels of BRCA1. We functionally demonstrated that miR-498 inhibits BRCA1 in breast cancer cell lines, and showed that inhibition of miR-498 led to reduced proliferation in the triple negative cell line Hs578T. Our results indicate that miR-498 regulates BRCA1 expression in breast cancer and its overexpression could contribute to the pathogenesis of sporadic TNBC via BRCA1 downregulation.


Assuntos
Proteína BRCA1/metabolismo , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias de Mama Triplo Negativas/genética , Apoptose , Proteína BRCA1/genética , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
7.
Clin Chem ; 61(8): 1098-106, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26056355

RESUMO

BACKGROUND: The identification of novel biomarkers for early breast cancer detection would be a great advance. Because of their role in tumorigenesis and stability in body fluids, microRNAs (miRNAs) are emerging as a promising diagnostic tool. Our aim was to identify miRNAs deregulated in breast tumors and evaluate the potential of circulating miRNAs in breast cancer detection. METHODS: We conducted miRNA expression profiling of 1919 human miRNAs in paraffin-embedded tissue from 122 breast tumors and 11 healthy breast tissue samples. Differential expression analysis was performed, and a microarray classifier was generated. The most relevant miRNAs were analyzed in plasma from 26 healthy individuals and 83 patients with breast cancer (36 before and 47 after treatment) and validated in 116 healthy individuals and 114 patients before treatment. RESULTS: We identified a large number of miRNAs deregulated in breast cancer and generated a 25-miRNA microarray classifier that discriminated breast tumors with high diagnostic sensitivity and specificity. Ten miRNAs were selected for further investigation, of which 4 (miR-505-5p, miR-125b-5p, miR-21-5p, and miR-96-5p) were significantly overexpressed in pretreated patients with breast cancer compared with healthy individuals in 2 different series of plasma. MiR-505-5p and miR-96-5p were the most valuable biomarkers (area under the curve 0.72). Moreover, the expression levels of miR-3656, miR-505-5p, and miR-21-5p were decreased in a group of treated patients. CONCLUSIONS: Circulating miRNAs reflect the presence of breast tumors. The identification of deregulated miRNAs in plasma of patients with breast cancer supports the use of circulating miRNAs as a method for early breast cancer detection.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , MicroRNAs/sangue , MicroRNAs/genética , Detecção Precoce de Câncer , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Valores de Referência , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA