Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 621(7978): 396-403, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37130545

RESUMO

Messenger RNA (mRNA) vaccines are being used to combat the spread of COVID-19 (refs. 1-3), but they still exhibit critical limitations caused by mRNA instability and degradation, which are major obstacles for the storage, distribution and efficacy of the vaccine products4. Increasing secondary structure lengthens mRNA half-life, which, together with optimal codons, improves protein expression5. Therefore, a principled mRNA design algorithm must optimize both structural stability and codon usage. However, owing to synonymous codons, the mRNA design space is prohibitively large-for example, there are around 2.4 × 10632 candidate mRNA sequences for the SARS-CoV-2 spike protein. This poses insurmountable computational challenges. Here we provide a simple and unexpected solution using the classical concept of lattice parsing in computational linguistics, where finding the optimal mRNA sequence is analogous to identifying the most likely sentence among similar-sounding alternatives6. Our algorithm LinearDesign finds an optimal mRNA design for the spike protein in just 11 minutes, and can concurrently optimize stability and codon usage. LinearDesign substantially improves mRNA half-life and protein expression, and profoundly increases antibody titre by up to 128 times in mice compared to the codon-optimization benchmark on mRNA vaccines for COVID-19 and varicella-zoster virus. This result reveals the great potential of principled mRNA design and enables the exploration of previously unreachable but highly stable and efficient designs. Our work is a timely tool for vaccines and other mRNA-based medicines encoding therapeutic proteins such as monoclonal antibodies and anti-cancer drugs7,8.


Assuntos
Algoritmos , Vacinas contra COVID-19 , COVID-19 , Estabilidade de RNA , RNA Mensageiro , SARS-CoV-2 , Vacinas de mRNA , Animais , Humanos , Camundongos , Códon/genética , COVID-19/genética , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/química , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Meia-Vida , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/imunologia , Vacinas de mRNA/química , Vacinas de mRNA/genética , Vacinas de mRNA/imunologia , Estabilidade de RNA/genética , Estabilidade de RNA/imunologia , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/imunologia , RNA Mensageiro/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/imunologia
2.
Nucleic Acids Res ; 50(9): 5299-5312, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35524551

RESUMO

The essential pre-mRNA splicing factor U2AF2 (also called U2AF65) identifies polypyrimidine (Py) tract signals of nascent transcripts, despite length and sequence variations. Previous studies have shown that the U2AF2 RNA recognition motifs (RRM1 and RRM2) preferentially bind uridine-rich RNAs. Nonetheless, the specificity of the RRM1/RRM2 interface for the central Py tract nucleotide has yet to be investigated. We addressed this question by determining crystal structures of U2AF2 bound to a cytidine, guanosine, or adenosine at the central position of the Py tract, and compared U2AF2-bound uridine structures. Local movements of the RNA site accommodated the different nucleotides, whereas the polypeptide backbone remained similar among the structures. Accordingly, molecular dynamics simulations revealed flexible conformations of the central, U2AF2-bound nucleotide. The RNA binding affinities and splicing efficiencies of structure-guided mutants demonstrated that U2AF2 tolerates nucleotide substitutions at the central position of the Py tract. Moreover, enhanced UV-crosslinking and immunoprecipitation of endogenous U2AF2 in human erythroleukemia cells showed uridine-sensitive binding sites, with lower sequence conservation at the central nucleotide positions of otherwise uridine-rich, U2AF2-bound splice sites. Altogether, these results highlight the importance of RNA flexibility for protein recognition and take a step towards relating splice site motifs to pre-mRNA splicing efficiencies.


Assuntos
Nucleotídeos , Precursores de RNA , Fator de Processamento U2AF , Humanos , Nucleotídeos/metabolismo , RNA/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA , Fator de Processamento U2AF/metabolismo , Uridina/metabolismo
3.
J Mol Biol ; 434(18): 167632, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35588868

RESUMO

RNA folding free energy change parameters are widely used to predict RNA secondary structure and to design RNA sequences. These parameters include terms for the folding free energies of helices and loops. Although the full set of parameters has only been traditionally available for the four common bases and backbone, it is well known that covalent modifications of nucleotides are widespread in natural RNAs. Covalent modifications are also widely used in engineered sequences. We recently derived a full set of nearest neighbor terms for RNA that includes N6-methyladenosine (m6A). In this work, we test the model using 98 optical melting experiments, matching duplexes with or without N6-methylation of A. Most experiments place RRACH, the consensus site of N6-methylation, in a variety of contexts, including helices, bulge loops, internal loops, dangling ends, and terminal mismatches. For matched sets of experiments that include either A or m6A in the same context, we find that the parameters for m6A are as accurate as those for A. Across all experiments, the root mean squared deviation between estimated and experimental free energy changes is 0.67 kcal/mol. We used the new experimental data to refine the set of nearest neighbor parameter terms for m6A. These parameters enable prediction of RNA secondary structures including m6A, which can be used to model how N6-methylation of A affects RNA structure.


Assuntos
Adenosina , Dobramento de RNA , RNA , Adenosina/análogos & derivados , Adenosina/química , Entropia , RNA/química
4.
Nat Commun ; 13(1): 1271, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277476

RESUMO

There is increasing interest in the roles of covalently modified nucleotides in RNA. There has been, however, an inability to account for modifications in secondary structure prediction because of a lack of software and thermodynamic parameters. We report the solution for these issues for N6-methyladenosine (m6A), allowing secondary structure prediction for an alphabet of A, C, G, U, and m6A. The RNAstructure software now works with user-defined nucleotide alphabets of any size. We also report a set of nearest neighbor parameters for helices and loops containing m6A, using experiments. Interestingly, N6-methylation decreases folding stability for adenosines in the middle of a helix, has little effect on folding stability for adenosines at the ends of helices, and increases folding stability for unpaired adenosines stacked on a helix. We demonstrate predictions for an N6-methylation-activated protein recognition site from MALAT1 and human transcriptome-wide effects of N6-methylation on the probability of adenosine being buried in a helix.


Assuntos
RNA , Software , Adenosina/análogos & derivados , Sequência de Bases , Humanos , Conformação de Ácido Nucleico , RNA/química , Termodinâmica
5.
Nat Commun ; 13(1): 988, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190568

RESUMO

Translating ribosomes unwind mRNA secondary structures by three basepairs each elongation cycle. Despite the ribosome helicase, certain mRNA stem-loops stimulate programmed ribosomal frameshift by inhibiting translation elongation. Here, using mutagenesis, biochemical and single-molecule experiments, we examine whether high stability of three basepairs, which are unwound by the translating ribosome, is critical for inducing ribosome pauses. We find that encountering frameshift-inducing mRNA stem-loops from the E. coli dnaX mRNA and the gag-pol transcript of Human Immunodeficiency Virus (HIV) hinders A-site tRNA binding and slows down ribosome translocation by 15-20 folds. By contrast, unwinding of first three basepairs adjacent to the mRNA entry channel slows down the translating ribosome by only 2-3 folds. Rather than high thermodynamic stability, specific length and structure enable regulatory mRNA stem-loops to stall translation by forming inhibitory interactions with the ribosome. Our data provide the basis for rationalizing transcriptome-wide studies of translation and searching for novel regulatory mRNA stem-loops.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , RNA Mensageiro/química , Proteínas de Bactérias/genética , DNA Polimerase III/genética , Escherichia coli/genética , Transferência Ressonante de Energia de Fluorescência , HIV/genética , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , RNA Viral/química , RNA Viral/metabolismo , Imagem Individual de Molécula , Termodinâmica
6.
Nat Commun ; 10(1): 4056, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492834

RESUMO

The introduction of insertion-deletions (INDELs) by non-homologous end-joining (NHEJ) pathway underlies the mechanistic basis of CRISPR-Cas9-directed genome editing. Selective gene ablation using CRISPR-Cas9 is achieved by installation of a premature termination codon (PTC) from a frameshift-inducing INDEL that elicits nonsense-mediated decay (NMD) of the mutant mRNA. Here, by examining the mRNA and protein products of CRISPR targeted genes in a cell line panel with presumed gene knockouts, we detect the production of foreign mRNAs or proteins in ~50% of the cell lines. We demonstrate that these aberrant protein products stem from the introduction of INDELs that promote internal ribosomal entry, convert pseudo-mRNAs (alternatively spliced mRNAs with a PTC) into protein encoding molecules, or induce exon skipping by disruption of exon splicing enhancers (ESEs). Our results reveal challenges to manipulating gene expression outcomes using INDEL-based mutagenesis and strategies useful in mitigating their impact on intended genome-editing outcomes.


Assuntos
Edição de Genes/métodos , Mutagênese , RNA Mensageiro/genética , Sequência de Aminoácidos , Sequência de Bases , Sistemas CRISPR-Cas , Linhagem Celular , Linhagem Celular Tumoral , Códon sem Sentido/genética , Mutação da Fase de Leitura , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Células HeLa , Humanos , Mutação INDEL , Estabilidade de RNA , RNA Mensageiro/química
7.
Viruses ; 9(5)2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28445416

RESUMO

The genomic RNA of the retrotransposon Ty1 is packaged as a dimer into virus-like particles. The 5' terminus of Ty1 RNA harbors cis-acting sequences required for translation initiation, packaging and initiation of reverse transcription (TIPIRT). To identify RNA motifs involved in dimerization and packaging, a structural model of the TIPIRT domain in vitro was developed from single-nucleotide resolution RNA structural data. In general agreement with previous models, the first 326 nucleotides of Ty1 RNA form a pseudoknot with a 7-bp stem (S1), a 1-nucleotide interhelical loop and an 8-bp stem (S2) that delineate two long, structured loops. Nucleotide substitutions that disrupt either pseudoknot stem greatly reduced helper-Ty1-mediated retrotransposition of a mini-Ty1, but only mutations in S2 destabilized mini-Ty1 RNA in cis and helper-Ty1 RNA in trans. Nested in different loops of the pseudoknot are two hairpins with complementary 7-nucleotide motifs at their apices. Nucleotide substitutions in either motif also reduced retrotransposition and destabilized mini- and helper-Ty1 RNA. Compensatory mutations that restore base-pairing in the S2 stem or between the hairpins rescued retrotransposition and RNA stability in cis and trans. These data inform a model whereby a Ty1 RNA kissing complex with two intermolecular kissing-loop interactions initiates dimerization and packaging.


Assuntos
RNA/química , RNA/metabolismo , Retroelementos , Saccharomyces cerevisiae/genética , Dimerização , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Iniciação Traducional da Cadeia Peptídica , RNA Viral/genética , Retroviridae/genética , Transcrição Reversa , Transcrição Gênica
8.
Biochemistry ; 54(45): 6769-82, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26451676

RESUMO

Knowledge of RNA structure is necessary to determine structure-function relationships and to facilitate design of potential therapeutics. RNA secondary structure prediction can be improved by applying constraints from nuclear magnetic resonance (NMR) experiments to a dynamic programming algorithm. Imino proton walks from NOESY spectra reveal double-stranded regions. Chemical shifts of protons in GH1, UH3, and UH5 of GU pairs, UH3, UH5, and AH2 of AU pairs, and GH1 of GC pairs were analyzed to identify constraints for the 5' to 3' directionality of base pairs in helices. The 5' to 3' directionality constraints were incorporated into an NMR-assisted prediction of secondary structure (NAPSS-CS) program. When it was tested on 18 structures, including nine pseudoknots, the sensitivity and positive predictive value were improved relative to those of three unrestrained programs. The prediction accuracy for the pseudoknots improved the most. The program also facilitates assignment of chemical shifts to individual nucleotides, a necessary step for determining three-dimensional structure.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação de Ácido Nucleico , RNA/química , Modelos Moleculares , Vírus da Leucemia Murina de Moloney/genética , Valor Preditivo dos Testes , Prótons , RNA Viral/química , Sensibilidade e Especificidade , Relação Estrutura-Atividade
9.
Biochemistry ; 50(5): 640-53, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21133351

RESUMO

Three-way multibranch loops (junctions) are common in RNA secondary structures. Computer algorithms such as RNAstructure and MFOLD do not consider the identity of unpaired nucleotides in multibranch loops when predicting secondary structure. There is limited experimental data, however, to parametrize this aspect of these algorithms. In this study, UV optical melting and a fluorescence competition assay are used to measure stabilities of multibranch loops containing up to five unpaired adenosines or uridines or a loop E motif. These results provide a test of our understanding of the factors affecting multibranch loop stability and provide revised parameters for predicting stability. The results should help to improve predictions of RNA secondary structure.


Assuntos
Conformação de Ácido Nucleico , RNA/química , Termodinâmica , Sequência de Bases , Fluorescência , Dados de Sequência Molecular , Estabilidade de RNA , Temperatura de Transição
10.
J Mol Biol ; 357(5): 1683-93, 2006 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-16487974

RESUMO

The nudged elastic band (NEB) technique has been implemented in AMBER to calculate low-energy paths for conformational changes. A novel simulated annealing protocol that does not require an initial hypothesis for the path is used to sample low-energy paths. This was used to study the conformational change of an RNA cis Watson-Crick/Hoogsteen GG non-canonical pair, with one G syn around the glycosidic bond and the other anti. A previous solution structure, determined by NMR-constrained modeling, demonstrated that the GG pairs change from (syn)G-(anti)G to (anti)G-(syn)G in the context of duplex r(GCAGGCGUGC) on the millisecond timescale. The set of low-energy paths found by NEB show that each G flips independently around the glycosidic bond, with the anti G flipping to syn first. Guanine bases flip without opening adjacent base-pairs by protruding into the major groove, accommodated by a transient change by the ribose to C2'-exo sugar pucker. Hydrogen bonds between bases and the backbone, which lower the energetic barrier to flipping, are observed along the path. The results show the plasticity of RNA base-pairs in helices, which is important for biological processes, including mismatch repair, protein recognition, and translation. The modeling of the GG conformational change also demonstrates that NEB can be used to discover non-trivial paths for macromolecules and therefore NEB can be used as an exploratory method for predicting putative conformational change paths.


Assuntos
Pareamento de Bases , Guanina/química , Conformação de Ácido Nucleico , Ligação de Hidrogênio , Estrutura Molecular , Peptídeos/química , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA