Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 56(8): 5154-5176, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35993349

RESUMO

Upon stress exposure, a broad network of structures comes into play in order to provide adequate responses and restore homeostasis. It has been known for decades that the main structures engaged during the stress response are the medial prefrontal cortex, the amygdala, the hippocampus, the hypothalamus, the monoaminergic systems (noradrenaline, dopamine and serotonin) and the periaqueductal gray. The lateral habenula (LHb) is an epithalamic structure directly connected to prefrontal cortical areas and to the amygdala, whereas it functionally interacts with the hippocampus. Also, it is a main modulator of monoaminergic systems. The LHb is activated upon exposure to basically all types of stressors, suggesting it is also involved in the stress response. However, it remains unknown if and how the LHb functionally interacts with the broad stress response network. In the current study we performed in rats a restraint stress procedure followed by immunohistochemical staining of the c-Fos protein throughout the brain. Using graph theory-based functional connectivity analyses, we confirm the principal hubs of the stress network (e.g., prefrontal cortex, amygdala and periventricular hypothalamus) and show that the LHb is engaged during stress exposure in close interaction with the medial prefrontal cortex, the lateral septum and the medial habenula. In addition, we performed DREADD-induced LHb inactivation during the same restraint paradigm in order to explore its consequences on the stress response network. This last experiment gave contrasting results as the DREADD ligand alone, clozapine-N-oxide, was able to modify the network.


Assuntos
Clozapina , Habenula , Animais , Dopamina/metabolismo , Habenula/fisiologia , Hipotálamo/metabolismo , Ligantes , Norepinefrina/metabolismo , Óxidos/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Serotonina/metabolismo
2.
Brain Struct Funct ; 225(7): 2029-2044, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32642914

RESUMO

Increasing evidence points to the engagement of the lateral habenula (LHb) in the selection of appropriate behavioral responses in aversive situations. However, very few data have been gathered with respect to its role in fear memory formation, especially in learning paradigms in which brain areas involved in cognitive processes like the hippocampus (HPC) and the medial prefrontal cortex (mPFC) are required. A paradigm of this sort is trace fear conditioning, in which an aversive event is preceded by a discrete stimulus, generally a tone, but without the close temporal contiguity allowing for their association based on amygdala-dependent information processing. In a first experiment, we analyzed cellular activations (c-Fos expression) induced by trace fear conditioning in subregions of the habenular complex, HPC, mPFC and amygdala using a factorial analysis to unravel functional networks through correlational analysis of data. This analysis suggested that distinct LHb subregions engaged in different aspects of conditioning, e.g. associative processes and onset of fear responses. In a second experiment, we performed chemogenetic LHb inactivation during the conditioning phase of the trace fear conditioning paradigm and subsequently assessed contextual and tone fear memories. Whereas LHb inactivation did not modify rat's behavior during conditioning, it induced contextual memory deficits and enhanced fear to the tone. These results demonstrate the involvement of the LHb in fear memory. They further suggest that the LHb is engaged in learning about threatening environments through the selection of relevant information predictive of a danger.


Assuntos
Condicionamento Clássico/fisiologia , Medo/fisiologia , Habenula/metabolismo , Memória/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Reação de Congelamento Cataléptica/fisiologia , Masculino , Atividade Motora/fisiologia , Córtex Pré-Frontal/metabolismo , Ratos Long-Evans
3.
Sci Adv ; 3(2): e1601068, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28275722

RESUMO

Alzheimer's disease (AD) is a neurodegenerative pathology commonly characterized by a progressive and irreversible deterioration of cognitive functions, especially memory. Although the etiology of AD remains unknown, a consensus has emerged on the amyloid hypothesis, which posits that increased production of soluble amyloid ß (Aß) peptide induces neuronal network dysfunctions and cognitive deficits. However, the relative failures of Aß-centric therapeutics suggest that the amyloid hypothesis is incomplete and/or that the treatments were given too late in the course of AD, when neuronal damages were already too extensive. Hence, it is striking to see that very few studies have extensively characterized, from anatomy to behavior, the alterations associated with pre-amyloid stages in mouse models of AD amyloid pathology. To fulfill this gap, we examined memory capacities as well as hippocampal network anatomy and dynamics in young adult pre-plaque TgCRND8 mice when hippocampal Aß levels are still low. We showed that TgCRND8 mice present alterations in hippocampal inhibitory networks and γ oscillations at this stage. Further, these mice exhibited deficits only in a subset of hippocampal-dependent memory tasks, which are all affected at later stages. Last, using a pharmacological approach, we showed that some of these early memory deficits were Aß-independent. Our results could partly explain the limited efficacy of Aß-directed treatments and favor multitherapy approaches for early symptomatic treatment for AD.


Assuntos
Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/genética , Disfunção Cognitiva/patologia , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/análise , Peptídeos beta-Amiloides/metabolismo , Animais , Comportamento Animal , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Memória de Curto Prazo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Parvalbuminas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Somatostatina/metabolismo
4.
Neurobiol Aging ; 36(2): 832-44, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25457559

RESUMO

The chronic decrease of brain amyloid-ß (Aß) peptides is an emerging therapeutic for Alzheimer's disease, but no such treatment has achieved clinical validation yet. In vivo, some brain proteases, including neprilysin, possess the ability of degrading Aß and experimental data suggest their exploitation in strategies to reduce cerebral Aß concentration. Previous studies have shown that pharmacologic doses of gamma-hydroxybutyrate (sodium oxybate or Xyrem) induce histone deacetylases (HDACs) inhibition and neprilysin gene expression. Here, we demonstrate that brain neprilysin overexpression induced in vivo by repeated gamma-hydroxybutyrate autoadministration reduces cerebral Aß contents and prevents cognitive deficits in APPSWE mice. Oral gamma-hydroxybutyrate also counteracted phosphoramidon-induced brain neprilysin inhibition and Aß accumulation. HDACs activities in SH-SY5Y cells were inhibited by gamma-hydroxybutyrate which did not affect amyloid peptide precursor intracellular domain. Together, our results suggest that gamma-hydroxybutyrate, acting via HDAC inhibition, upregulates neprilysin to reduce Aß level and related memory deficits. Because gamma-hydroxybutyrate doses used herein are clinically relevant, our data suggest that chronic oral administration of gamma-hydroxybutyrate or its analogs may be considered for strategies against presymptomatic or established Alzheimer's disease.


Assuntos
Doença de Alzheimer/genética , Oxibato de Sódio/administração & dosagem , Oxibato de Sódio/farmacologia , Administração Oral , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Células Cultivadas , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases , Histona Desacetilases/metabolismo , Humanos , Camundongos , Terapia de Alvo Molecular , Neprilisina/genética , Neprilisina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA