Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant J ; 112(1): 7-26, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36050841

RESUMO

Heat stress transcription factors (HSFs) and microRNAs (miRNAs) regulate different stress and developmental networks in plants. Regulatory feedback mechanisms are at the basis of these networks. Here, we report that plants improve their heat stress tolerance through HSF-mediated transcriptional regulation of MIR169 and post-transcriptional regulation of Nuclear Factor-YA (NF-YA) transcription factors. We show that HSFs recognize tomato (Solanum lycopersicum) and Arabidopsis MIR169 promoters using yeast one-hybrid/chromatin immunoprecipitation-quantitative PCR. Silencing tomato HSFs using virus-induced gene silencing (VIGS) reduced Sly-MIR169 levels and enhanced Sly-NF-YA9/A10 target expression. Further, Sly-NF-YA9/A10 VIGS knockdown tomato plants and Arabidopsis plants overexpressing At-MIR169d or At-nf-ya2 mutants showed a link with increased heat tolerance. In contrast, Arabidopsis plants overexpressing At-NF-YA2 and those expressing a non-cleavable At-NF-YA2 form (miR169d-resistant At-NF-YA2) as well as plants in which At-miR169d regulation is inhibited (miR169d mimic plants) were more sensitive to heat stress, highlighting NF-YA as a negative regulator of heat tolerance. Furthermore, post-transcriptional cleavage of NF-YA by elevated miR169 levels resulted in alleviation of the repression of the heat stress effector HSFA7 in tomato and Arabidopsis, revealing a retroactive control of HSFs by the miR169:NF-YA node. Hence, a regulatory feedback loop involving HSFs, miR169s and NF-YAs plays a critical role in the regulation of the heat stress response in tomato and Arabidopsis plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Solanum lycopersicum , Termotolerância , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Benzenoacetamidas , Fator de Ligação a CCAAT/genética , Regulação da Expressão Gênica de Plantas/genética , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Piperidonas , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Termotolerância/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Planta ; 251(2): 55, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31974682

RESUMO

MAIN CONCLUSION: Expansion of MIR169 members by duplication and new mature forms, acquisition of new promoters, differential precursor-miRNA processivity and engaging novel targets increase the functional diversification of MIR169 in tomato. MIR169 family is an evolutionarily conserved miRNA family in plants. A systematic in-depth analysis of MIR169 family in tomato is lacking. We report 18 miR169 precursors, annotating new loci for MIR169a, b and d, as well as 3 novel mature isoforms (MIR169f/g/h). The family has expanded by both tandem- and segmental-duplication events during evolution. A tandem-pair MIR169b/b-1 and MIR169b-2/h is polycistronic in nature coding for three MIR169b isoforms and a new variant miR169h, that is evidently absent in the wild relatives S. pennellii and S. pimpinellifolium. Seven novel miR169 targets including RNA-binding protein, protein-phosphatase, aminotransferase, chaperone, tetratricopeptide-repeat-protein, and transcription factors ARF-9B and SEPELLATA-3 were established by efficient target cleavage in the presence of specific precursors as well as increased target abundance upon miR169 chelation by short-tandem-target-mimic construct in transient assays. Comparative antagonistic expression profiles of MIR169:target pairs suggest MIR169 family as ubiquitous regulator of various abiotic stresses (heat, cold, dehydration and salt) and developmental pathways. This regulation is partly brought about by acquisition of new promoters as demonstrated by promoter MIR169:GUS reporter assays as well as differential processivity of different precursors and miRNA cleavage efficiencies. Thus, the current study augments the functional horizon of MIR169 family with applications for stress tolerance in crops.


Assuntos
Variação Genética , MicroRNAs/genética , Solanum lycopersicum/genética , Arabidopsis/genética , Sequência de Bases , Evolução Molecular , Duplicação Gênica/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , MicroRNAs/metabolismo , Oryza/genética , Desenvolvimento Vegetal/genética , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reprodutibilidade dos Testes , Especificidade da Espécie , Estresse Fisiológico/genética , Nicotiana/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Plant Mol Biol ; 65(3): 259-75, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17721744

RESUMO

An Indian isolate of Rice tungro bacilliform virus from West Bengal (RTBV-WB) showed significant nucleotide differences in its putative promoter region when compared with a previously characterized isolate from Philippines. The transcription start site of RTBV-WB was mapped followed by assessing the activity and tissue-specificity of the full-length (FL) promoter (-231 to +645) and several of its upstream and downstream deletions by studying the expression of beta-Glucuronidase (GUS) reporter gene in transgenic rice (Oryza sativa L. subsp. indica) plants at various stages of development. In addition to the expected vascular-specific expression pattern, studied by histochemical staining, GUS enzymatic assay and northern and RT-PCR analysis, two novel patterns were revealed in some of the downstream deleted versions; a non-expressing type, representing no expression at any stage in any tissue and constitutive type, representing constitutive expression at all stages in most tissues. This indicated the presence of previously unreported positive and negative cis-regulatory elements in the downstream region. The negative element and a putative enhancer region in the upstream region specifically bound to rice nuclear proteins in vitro. The FL and its deletion derivatives were also active in heterologous systems like tobacco (Nicotiana tabacum) and wheat (Triticum durum). Expression patterns in tobacco were different from those observed in rice suggesting the importance of upstream elements in those systems and host-specific regulation of the promoter in diverse organisms. Thus, the RTBV-WB FL promoter and its derivatives contain an array of cis-elements, which control constitutive or tissue- and development-specific gene expression in a combinatorial fashion.


Assuntos
Regulação da Expressão Gênica , Oryza/virologia , Regiões Promotoras Genéticas/genética , Tungrovirus/genética , Sequência de Bases , Northern Blotting , Glucuronidase/genética , Glucuronidase/metabolismo , Interações Hospedeiro-Patógeno , Índia , Dados de Sequência Molecular , Oryza/genética , Filipinas , Plantas Geneticamente Modificadas , Sequências Reguladoras de Ácido Nucleico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie , Nicotiana/genética , Sítio de Iniciação de Transcrição , Tungrovirus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA