Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38931105

RESUMO

The family Caryophyllaceae comprises more than 2600 species spread widely across all the continents. Their economic importance is mainly as ornamentals (carnation) and as weeds in agriculture. Some species have been used traditionally (and some are still) in herbal medicine or as emulsifiers in food processing. These applications are based on the high content of triterpenoid saponins. Typical for this family are also ribosome-inactivating proteins (RIPs), which are potentially highly toxic. Agrostemma githago L. (common corncockle) was historically considered a serious toxicological hazard owing to cereal grain contamination by its seeds. Notwithstanding, it was also recommended as a drug by various herbalists. In this review, the literature was searched in the PubMed, Google Scholar, and Scopus databases for papers focused on the chemical composition and bioactivity of the two accepted species of the Agrostemma genus. This systematic review adhered to the Preferred Reporting Items for Systematic Reviews and MetaAnalysis (PRISMA) guidelines. Current research reports the cytotoxicity against neoplastic cells; the protection against oxidative stress; the suppression of Leishmania major culture growth; the inhibition of protein synthesis; and the antiviral, anti-angiogenic, and antihypercholesterolemic activities of common corncockle. The future prospects of using A. githago saponins as adjuvants in drug formulations and enhancing the cytotoxicity of RIPs are also discussed.

2.
Molecules ; 29(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257394

RESUMO

This study delved into the influence of ecological and seasonal dynamics on the synthesis of secondary metabolites in the medicinal halophyte Limonium algarvense Erben, commonly known as sea lavender, and examined their antioxidant and anti-inflammatory properties. Aerial parts of sea lavender were systematically collected across winter, spring, summer, and autumn seasons from distinct geographic locations in southern Portugal, specifically "Ria de Alvor" in Portimão and "Ria Formosa" in Tavira. The investigation involved determining the total polyphenolic profile through spectrophotometric methods, establishing the chemical profile via liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS), and evaluating in vitro antioxidant properties using radical and metal-based methods, along with assessing anti-inflammatory capacity through a cell model. Results unveiled varying polyphenol levels and profiles across seasons, with spring and autumn samples exhibiting the highest content, accompanied by the most notable antioxidant and anti-inflammatory capacities. Geographic location emerged as an influential factor, particularly distinguishing plants from "Ria de Alvor". Seasonal fluctuations were associated with environmental factors, including temperature, which, when excessively high, can impair plant metabolism, but also with the presence of flowers and seeds in spring and autumn samples, which also seems to contribute to elevated polyphenol levels and enhanced bioproperties of these samples. Additionally, genetic factors may be related to differences observed between ecotypes (geographical location). This study underscores sea lavender's potential as a natural source of antioxidant and anti-inflammatory agents, emphasizing the significance of considering both geographic location and seasonal dynamics in the assessment of phenolic composition and bioactive properties in medicinal plant species.


Assuntos
Lavandula , Plumbaginaceae , Antioxidantes , Estações do Ano , Espectrometria de Massas em Tandem , Compostos Fitoquímicos , Polifenóis , Anti-Inflamatórios
3.
Fitoterapia ; 171: 105702, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37848084

RESUMO

Vanicosides A and B isolated from Reynoutria sachalinensis rhizomes are disaccharide phenylpropanoid esters with proven antioxidant activity. Our earlier study showed the cytotoxic activity of vanicosides against melanoma cells, but the mechanism of cell death has not been elucidated. Based on the chemical structure of vanicosides, we proposed that they may induce cell death by generating reactive oxygen species (ROS) into melanoma cells. Moreover, the glucose molecule in their structure can affect the glucose transporters (GLUTs), upregulated in cancer cells. The A375 (melanotic) and C32 (amelanotic) melanoma cell lines were applied. Cell viability assay and ROS-Glo™ assay were performed before and after blocking of Glucose Transporter Type 1 (GLUT1) by WZB117. Fibroblasts and the SKOV-3 line were included in the study to test selectivity in the action of vanicosides and help to elucidate the mechanism of action. Upon incubation with vanicosides, high production of ROS occured, especially inside C32 cells, which was significantly reduced after GLUT-1 blocking. The A375 cells produced less ROS. Melanoma cells were simillary sensitive to the cytotoxic effects of vanicosides, which was clearly enhanced when vanicosides were used together with the WZB117 (GLUT1 inhibitor). The SKOV-3 line and the fibroblasts showed much less sensitivity to the cytotoxicity of vanicosides, also used together with WZB117. Moreover, no significant ROS formation was observed in these lines. The study proved that vanicosides generate ROS inside melanoma cells. These findings suggest that the combination of pro-oxidative acting vanicosides and GLUT1 inhibitors exerts a synergistic cytotoxic effect on melanoma cells.


Assuntos
Antineoplásicos , Melanoma , Humanos , Transportador de Glucose Tipo 1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Estrutura Molecular , Antineoplásicos/farmacologia , Melanoma/tratamento farmacológico , Estresse Oxidativo , Glucose/metabolismo , Melanoma Maligno Cutâneo
4.
Int J Mol Sci ; 24(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37895107

RESUMO

In this research, a HPLC analysis, along with transcriptomics tools, was applied to evaluate chitosan and water stress for the prediction of phenolic flavonoids patterns and terpenoid components accumulation in Salvia abrotanoides Karel and S. yangii. The results indicated that the tanshinone contents under drought stress conditions increased 4.2-fold with increasing drought stress intensity in both species. The rosmarinic acid content in the leaves varied from 0.038 to 11.43 mg/g DW. In addition, the flavonoid content was increased (1.8 and 1.4-fold) under mild water deficit conditions with a moderate concentration of chitosan (100 mg L-1). The application of foliar chitosan at 100 and 200 mg L-1 under well-watered and mild stress conditions led to increases in hydroxyl cryptotanshinone (OH-CT) and cryptotanshinone (CT) contents as the major terpenoid components in both species. The expressions of the studied genes (DXS2, HMGR, KSL, 4CL, and TAT) were also noticeably induced by water deficit and variably modulated by the treatment with chitosan. According to our findings, both the drought stress and the application of foliar chitosan altered the expression levels of certain genes. Specifically, we observed changes in the expression levels of DXS and HMGR, which are upstream genes in the MEP and MVA pathways, respectively. Additionally, the expression level of KSL, a downstream gene involved in diterpenoid synthesis, was also affected. Finally, the present investigation confirmed that chitosan treatments and water stress were affected in both the methylerythritol phosphate pathway (MEP) and mevalonate (MVA) pathways, but their commitment to the production of other isoprenoids has to be considered and discussed.


Assuntos
Quitosana , Salvia , Terpenos/metabolismo , Salvia/genética , Salvia/metabolismo , Transcriptoma , Desidratação , Flavonoides
5.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-37259412

RESUMO

Polygoni Cuspidati Rhizoma et Radix (syn. rhizomes of Reynoutria japonica Houtt.) is a pharmacopoeial raw material in Europe and China. In traditional medicine, one of the applications for Reynoutria japonica rhizomes is wound healing. In a recent in vitro study, we demonstrated that ethanol and acetone extracts from this herbal drug have the potential to heal oral gum wounds. However, considering that a majority of herbal medicines have been traditionally administered as water decoctions, in the present study, a decoction of Reynoutria japonica rhizomes was prepared and detailed tests to determine its in vitro gingival wound healing activity were conducted. We used the primary human gingival fibroblasts (HGF) incubated with a decoction to determine cell viability (MTT assay), cell proliferation (the confocal laser scanning microscope-CLSM), and cell migration (wound healing assay). Moreover, the collagen type III expression was examined using immunocytochemical staining. The studied decoction was qualitatively and quantitatively characterized using the validated HPLC/DAD/ESI-HR-QTOF-MS method. The Folin-Ciocalteu assay was used to determine the total phenols and tannins content. Additionally, HPLC-RI analysis of decoction and the previously obtained ethanol and acetone extracts was used to determine the composition of saccharides. Low concentration (from 50 to 1000 µg/mL) of decoction after 24 h incubation caused a significant increase in HGF cell viability. No cytotoxic effect was observed at any tested concentration (up to 2000 µg/mL). The lowest active concentration of decoction (50 µg/mL) was selected for further experiments. It significantly stimulated human gingival fibroblasts to proliferate, migrate, and increase the synthesis of collagen III. Phytochemical analysis showed significantly fewer polyphenols in the decoction than in the ethanol and acetone extracts tested earlier. In contrast, high levels of polysaccharides were observed. In our opinion, they may have a significant effect on the oral wound healing parameters analyzed in vitro. The results obtained encourage the use of this raw material in its traditional, safe form-decoction.

6.
Molecules ; 28(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37375327

RESUMO

The use of by-products from the agri-food industry is a promising approach for production of value-added, polyphenol-rich dietary supplements or natural pharmaceutical preparations. During pistachio nut processing, a great amount of husk is removed, leaving large biomass for potential re-use. The present study compares antiglycative, antioxidant, and antifungal activities as well as nutritional values of 12 genotypes belonging to four pistachio cultivars. Antioxidant activity was measured using DPPH and ABTS assays. Antiglycative activity was evaluated as inhibition of advanced glycation end product (AGE) formation in the bovine serum albumin/methylglyoxal model. HPLC analysis was performed to determine the major phenolic compounds. Cyanidin-3-O-galactoside (120.81-181.94 mg/100 g DW), gallic acid (27.89-45.25), catechin (7.2-11.01), and eriodictyol-7-O-glucoside (7.23-16.02) were the major components. Among genotypes, the highest total flavonol content (14.8 mg quercetin equivalents/g DW) and total phenolic content (262 mg tannic acid equivalent/g DW) were in KAL1 (Kaleghouchi) and FAN2 (Fandoghi), respectively. The highest antioxidant (EC50 = 375 µg/mL) and anti-glycative activities were obtained for Fan1. Furthermore, potent inhibitory activity against Candida species was recorded with MIC values of 3.12-12.5 µg/mL. The oil content ranged from 5.4% in Fan2 to 7.6% in Akb1. The nutritional parameters of the tested cultivars were highly variable: crude protein (9.8-15.8%), ADF (acid detergent fiber 11.9-18.2%), NDF (neutral detergent fiber, 14.8-25.6%), and condensed tannins (1.74-2.86%). Finally, cyanidin-3-O-galactoside was considered an effective compound responsible for antioxidant and anti-glycative activities.


Assuntos
Antioxidantes , Pistacia , Antioxidantes/farmacologia , Antioxidantes/química , Pistacia/química , Candida , Detergentes , Ácido Gálico/farmacologia , Fenóis/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
7.
Molecules ; 28(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175125

RESUMO

Oregano and marjoram are important aromatic spices in the food industry, as well as medicinal plants with remarkable antioxidant properties. Despite their popularity, little is known about treatments that would influence the antioxidant capacity of essential oils. In this study, different spectra of LED light, namely blue, red, white, blue-red, and natural ambient light as a control, were applied to assess the essential oil content, composition, flavonoid, phenolic, and antioxidant capacity of oregano and marjoram. GC-MS analysis revealed thymol, terpinen-4-ol, sabinene, linalool, p-cymene, and γ-terpinene as the main compounds. In oregano, the thymol content ranged from 11.91% to 48.26%, while in marjoram it varied from 17.47% to 35.06% in different samples. In oregano and marjoram, the highest phenolic contents were in blue (61.26 mg of tannic acid E/g of DW) and in white (65.18 mg of TAE/g of DW) light, respectively, while blue-red illumination caused the highest increase in total flavonoids. The antioxidant activity of oregano and marjoram extract was evaluated using two food model systems, including DPPH and ß-carotene bleaching. The highest antioxidant capacity was obtained in control light in oregano and blue-red light in marjoram. The results provide information on how to improve the desired essential oil profile and antioxidant capacity of extracts for industrial producers.


Assuntos
Óleos Voláteis , Origanum , Óleos Voláteis/química , Antioxidantes/química , Origanum/química , Timol , Extratos Vegetais/química , Fenóis/análise
8.
Front Plant Sci ; 14: 1142624, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938053

RESUMO

Scutellaria baicalensis Georgi is a valuable medicinal plant of the Lamiaceae family. The roots, Scutellariae baicalensis radix, are valued in the traditional medicine of East Asia and are also listed in several pharmacopeias, such as the Chinese and European versions. The roots contain a high amount of flavones, such as baicalein, wogonin and their glucuronides, baicalin and wogonoside, respectively, with rare structures of unsubstituted B-ring. These major constituents are responsible for its pharmacological activity, mainly anti-inflammatory, antiviral, and antitumor, as well as BDZ-receptor modulating. There is a fast-growing demand for both the crude drug and the individual flavonoids obtained from it. However, the variability of content and composition of flavonoids in the roots is significant and affects pharmaceutical use, and little is known about the influence of various factors on root quality. In our experiments, we use aeroponics to determine the effect of electroporation as an abiotic stressor on plant growth, development, and root mass, as well as on its metabolic profile. Results: Electroporation significantly impacted plant growth and the content of flavonoids, especially baicalein and wogonin, depending on the treatment parameters. Concentrations of aglycones were increased in at least half of the treatment conditions. The greatest amounts (a 2.5-fold increase compared to controls) were recorded after applying an electrical field characterized by the following parameters: E = 3 kV/cm, t = 100 µs, and N = 10. In conclusion, electrostimulation is an innovative and efficient way to increase plant growth and yield in an aeroponic system, as well as modulate the profile and content of bioactive flavones in the roots. However, the fine-tuning of these parameters, such as the electrical field strength (E), length (t), and number (N) of impulses delivered, is of great importance. It was also shown that cultivation of the experimental plants in aeroponics had a positive impact on their survival and development while being a sustainable and efficient horticultural practice.

9.
Protoplasma ; 260(3): 967-985, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36526928

RESUMO

Ducrosia anethifolia (DC.) Boiss. is an aromatic medicinal plant that has been traditionally used as an analgesic to treat headaches, backaches, colic, and cold. This study evaluated the yield, physiological, and phytochemical traits of 24 populations for 2 consecutive years under the water stress condition. The seed yield and physiological traits demonstrated the highest values in the first and second year, respectively. Hydrogen peroxide (H2O2), proline, malondialdehyde (MDA), and antioxidant activity enzymes were elevated, while chlorophyll, carotenoids, relative water content (RWC), and yield decreased under drought stress. High-performance liquid chromatography (HPLC) was also applied to assess the changes in some polyphenolic compounds in response to water stress. The increase in some phenolic compounds, such as p-coumaric acid, was recorded due to drought stress, while there was a decrease in flavonoids, that is luteolin and quercetin. Among the populations, Abarkuh2 indicated the highest increase in p-coumaric acid (96%) in response to drought stress. In general, high diversity among the studied populations provides new insights into choosing the beneficial populations for medicinal and food purposes. HIGHLIGHTS: • Changes in polyphenolics of Moshgak populations were obtained in response to water stress. • Gallic acid, ferulic acid, p-coumaric acid and vanillic acid were the major components. • The phenolic compounds was increased due to drought stress while flavonoids were decreased High variation was obtained between Moshgak populations.


Assuntos
Secas , Peróxido de Hidrogênio , Humanos , Desidratação , Antioxidantes , Flavonoides , Fenóis , Estresse Fisiológico
10.
Biology (Basel) ; 11(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36552267

RESUMO

Among traditional Iranian herbs, Perovskia species (a subgenus of Salvia), while being valued ornamentals, are also studied for numerous potential pharmacological and therapeutic aspects. The current study was conducted to assess the effectiveness of two species of arbuscular mycorrhizal fungi (AMF), Funneliformis mosseae and Rhizophagus intraradices, separately and in combination, in terms of the essential oil content and compositions along with the enzymatic and non-enzymatic antioxidants in Salvia abrotanoides and S. yangii in response to three levels of irrigation, including 100% FC as well-watered, 75% FC (moderate irrigation deficit), and 50% FC (severe irrigation deficit). In both species, essential oil content, enzyme antioxidant activities, total phenolics, and flavonoids were increased significantly with the severity of stress; this increase was more pronounced in mycorrhizal inoculated herbs. Furthermore, leaf phosphorus concentration, relative water content, chlorophylls a and b, and total carotenoids decreased in parallel with reducing soil moisture; albeit, AMF inoculation improved the stress symptoms under increasing severity of water restriction compared with their control conditions. In addition, the percentage of root colonization was positively correlated with the relative water content (RWC) and leaf phosphorus concentration. Taking into account the essential oil groups, AMF colonization elevated some essential oil components, such as oxygenated monoterpenes, 1,8-cineol, camphor, and borneol, whereas the main sesquiterpenes, including E-ß-caryophyllene and α-humulene, remarkably decreased. Taken together, these findings highlighted the role of symbiosis with AMFs in increasing the tolerance of water deficit stress in S. abrotanoides and S. yangii and improving their essential oil composition.

11.
Foods ; 11(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36230162

RESUMO

Ajowan (Trachyspermum ammi L.) is considered a valuable spice plant with a high thymol content. Seed yield, essential oil constituents, polyphenolic composition, and antioxidant capacity of ajowan (Trachyspermum ammi L.) populations were evaluated in three (normal, moderate, and severe) water irrigation regimes. The highest essential oil content (5.55%) was obtained under normal condition in the Yazd population. However, both essential oil and seed yield showed significant reductions as a result of water stress. According to gas chromatography-mass spectrometry (GC-MS) analysis, thymol (61.44%), γ-terpinene (26.96%), and p-cymene (20.32%) were identified as the major components of the oil. The highest (89.01%) and the lowest (37.54%) thymol contents were in Farsmar and Hamadan populations in severe stress condition, respectively. Based on HPLC analysis, chlorogenic (3.75-47.35 mg/100 g), caffeic (13.2-40.10 mg/100 g), and ferulic acid (11.25-40.10 mg/100 g) were identified as the major phenolic acids, while rutin was determined as the major flavonoid (11.741-20.123 mg/100 g). Moreover, total phenolic and flavonoid contents were elevated under drought stress treatment, while antioxidants responded inconsistently to stress based on two model systems. Overall, the Yazd population exhibited a superior response to water stress, as evidenced by its less reduced thymol and oil yield content, while Arak and Khormo had the highest accumulation of polyphenolic compounds.

12.
Med Hypotheses ; 168: 110965, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36313266

RESUMO

Specific antibodies that humans acquire as a result of disease or after vaccination are needed to effectively suppress infection with a specific variant of SARS CoV-2 virus. The S protein of the D614G variant of coronavirus is used as an antigen in known vaccines to date. It is known that COVID-19 disease resulting from infection with this coronavirus can often be very dangerous to the health and lives of patients. In contrast, vaccines produce antibodies against an older version of the protein S-D614G (January 2020) and therefore have difficulty recognizing new variants of the virus. In our project we propose to obtain specific and precise antibodies by means of so-called controlled infection against specific infectious variants of the SARS-CoV-2 virus "here and now". Currently, several variants of this pathogen have already emerged that threaten the health and lives of patients. We propose to reduce this threat by partially, but not completely, blocking the fusion mechanism of the SARS-CoV-2 virus into human respiratory cells. According to our plan, this can be achieved by inhibiting cathepsin L activity in respiratory cells, after introducing natural and non-toxic cysteine protease inhibitors into this area. We obtain these inhibitors by our own method from natural, "human body friendly" natural resources. We hypothesize that blocking cathepsin L will reduce the number of infecting viruses in cells to such an extent that COVID-19 developing in infected individuals will not threaten their health and life. At the same time, the number of viruses will be sufficient for the body's own immune system to produce precise antibodies against a specific version of this pathogen.

13.
Nutrients ; 13(11)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34836321

RESUMO

Hyperglycemia, when sustained over a long time in diabetes mellitus (DM), leads to biochemical and cellular abnormalities, primarily through the formation of advanced glycation end-products (AGEs). In the treatment of diabetes, beside blood-sugar-lowering medications, a consumption of herbal products that can inhibit the AGEs' formation is recommended. This study investigated the in vitro antiglycoxidative potential of extracts and fractions from the rhizomes of Japanese, Giant, and Bohemian knotweeds (Reynoutria japonica (Houtt.), R. sachalinensis (F. Schmidt) Nakai, and R.× bohemica Chrtek et Chrtkova). Their effects on glycooxidation of bovine and human serum albumin were evaluated by incubation of the proteins with a mixture of glucose and fructose (0.5 M) and 150 µg/mL of extract for 28 days at 37 °C, followed by measuring early and late glycation products, albumin oxidation (carbonyl and free thiol groups), and amyloid-ß aggregation (thioflavin T and Congo red assays). The highest antiglycoxidative activity, comparable or stronger than the reference drug (aminoguanidine), was observed for ethyl acetate and diethyl ether fractions, enriched in polyphenols (stilbenes, phenylpropanoid disaccharide esters, and free and oligomeric flavan-3-ols). In conclusion, the antiglycoxidative compounds from these three species should be further studied for potential use in the prevention and complementary treatment of DM.


Assuntos
Antioxidantes/farmacologia , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Reynoutria , Rizoma , Acetatos/farmacologia , Animais , Bovinos , Diabetes Mellitus/sangue , Diabetes Mellitus/tratamento farmacológico , Éter/farmacologia , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Glicosilação/efeitos dos fármacos , Humanos , Oxirredução/efeitos dos fármacos , Polifenóis/farmacologia , Albumina Sérica/metabolismo , Soroalbumina Bovina/metabolismo
14.
Molecules ; 26(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34684717

RESUMO

In this study, natural deep eutectic solvents (NADES) formed by choline chloride (ChCl), sucrose, fructose, glucose, and xylose, were used to extract antioxidants from the halophyte Polygonum maritimum L. (sea knotgrass) and compared with conventional solvents (ethanol and acetone). NADES and conventional extracts were made by an ultrasound-assisted procedure and evaluated for in vitro antioxidant properties by the radical scavenging activity (RSA) on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, oxygen radical absorbance capacity (ORAC), and copper chelating activity (CCA). Samples were profiled by liquid chromatography (LC)-electrospray ionization (ESI)-QTOF-MS analysis. ChCl:fructose was more efficient in the DPPH assay, than the acetone extract. ChCl:sucrose and ChCl:fructose extracts had the highest ORAC when compared with the acetone extract. NADES extracts had higher CCA, than the acetone extract. The phenolic composition of the NADES extracts was less complex than the conventional extracts, but the proportions of major antioxidants, such as flavonols and flavan-3-ols, were similar in all the solvents. Myricitrin was the major flavonoid in all of the samples, while gallic acid was the main phenolic acid in the conventional extracts and present in a greater amount in ChCl:fructose. Results suggest that NADES containing ChCl and sucrose/fructose can replace conventional solvents, especially acetone, in the extraction of antioxidants from sea knotgrass.


Assuntos
Antioxidantes/isolamento & purificação , Fallopia multiflora/química , Solventes/química , Antioxidantes/química , Etanol , Fallopia multiflora/metabolismo , Flavonoides/isolamento & purificação , Fenóis/química , Extratos Vegetais/química , Polygonum/química , Polifenóis/química
15.
Molecules ; 26(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068950

RESUMO

Coleus amboinicus Lour., Lamiaceae, is a perennial herb that is native to Indonesia and also cultivated in Africa, Asia and Australia. The major phytochemicals responsible for its bioactivity are rosmarinic acid (RA) and its analogues, flavonoids and abietane diterpenoids. The possibility of cultivation in a colder climate would extend the use of this herb and provide new opportunities to herb growers and livestock farmers. Our study to compare feed value and phytochemical composition of C. amboinicus plants cultivated in its original region, Indonesia, and in Poland. The crude protein content was significantly higher in plants cultivated in Indonesia compared to those cultivated in Poland-21% and 13% of dry matter, respectively. The higher ADF contents were detected in C. amboinicus cultivated in Indonesia, 38-41%, in comparison to 34% in plants cultivated in Poland. The phytochemical composition was also significantly influenced by the cultivation location. Polish samples were higher in polyphenols (RA and its analogues), and also had 1.5-2-fold higher antioxidant potential, as measured by DPPH scavenging, phosphomolybdenum reduction and Fenton reaction driven lipid peroxidation. The Indonesian samples contained more diterpenoid compounds, such as dihydroxyroyleanone, and the sum of terpenoids was ca. 10 times higher than in samples from Poland (15.59-23.64 vs. 1.87 µg/g of extracts). In conclusion, C. amboinicus is suitable for cultivation in non-optimal climatic conditions but some nutritional properties and bioactivity are significantly affected.


Assuntos
Antioxidantes/farmacologia , Coleus/química , Coleus/crescimento & desenvolvimento , Compostos Fitoquímicos/análise , Animais , Análise Discriminante , Comportamento Alimentar , Indonésia , Análise dos Mínimos Quadrados , Polônia , Análise de Componente Principal , Ovinos
16.
Int J Mol Sci ; 22(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440733

RESUMO

Flavonoids are common plant natural products able to suppress ROS-related damage and alleviate oxidative stress. One of key mechanisms, involved in this phenomenon is chelation of transition metal ions. From a physiological perspective, iron is the most significant transition metal, because of its abundance in living organisms and ubiquitous involvement in redox processes. The chemical, pharmaceutical, and biological properties of flavonoids can be significantly affected by their interaction with transition metal ions, mainly iron. In this review, we explain the interaction of various flavonoid structures with Fe(II) and Fe(III) ions and critically discuss the influence of chelated ions on the flavonoid biochemical properties. In addition, specific biological effects of their iron metallocomplexes, such as the inhibition of iron-containing enzymes, have been included in this review.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Complexos de Coordenação/química , Flavonoides/química , Ferro/química , Animais , Quelantes/química , Quelantes/farmacologia , Heme/química , Humanos , Íons/química , Íons/metabolismo , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
17.
Nutrients ; 13(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430257

RESUMO

Flavan-3-ols and their oligomeric forms called proanthocyanidins are polyphenolic compounds occurring in several foodstuffs and in many medicinal herbs. Their consumption is associated with numerous health benefits. They exhibit antioxidant, anti-inflammatory, cytoprotective, as well as antimicrobial activity. The latter property is important in the prevention and treatment of periodontal diseases. Periodontitis is a multifactorial polymicrobial infection characterized by a destructive inflammatory process affecting the periodontium. Using non-toxic and efficient natural products such as flavanol derivatives can significantly contribute to alleviating periodontitis symptoms and preventing the disease's progress. Therefore, a comprehensive systematic review of proanthocyanidins and flavan-3-ols in the prevention and treatment of periodontitis was performed. The present paper reviews the direct antibacterial effects of these compounds against periodontic pathogens. The immunomodulatory effects, including animal and clinical studies, are included in a separate, parallel article. There is significant evidence supporting the importance of the antibacterial action exerted by proanthocyanidins from edible fruits, tea, and medicinal herbs in the inhibition of periodontitis-causing pathogens.


Assuntos
Antibacterianos/uso terapêutico , Flavonoides/farmacologia , Periodontite/tratamento farmacológico , Periodontite/prevenção & controle , Proantocianidinas/farmacologia , Animais , Anti-Inflamatórios , Antioxidantes , Flavonoides/química , Frutas/química , Gengivite/tratamento farmacológico , Gengivite/prevenção & controle , Humanos , Extratos Vegetais/farmacologia , Plantas Medicinais , Polifenóis/farmacologia , Taninos , Chá/química
18.
Nutrients ; 13(1)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467650

RESUMO

This paper continues the systematic review on proanthocyanidins and flavan-3-ols in the prevention and treatment of periodontal disease and covers the immunomodulatory effects, and animal- and clinical studies, while the other part discussed the direct antibacterial properties. Inflammation as a major response of the periodontal tissues attacked by pathogenic microbes can significantly exacerbate the condition. However, the bidirectional activity of phytochemicals that simultaneously inhibit bacterial proliferation and proinflammatory signaling can provide a substantial alleviation of both cause and symptoms. The modulatory effects on various aspects of inflammatory and overall immune response are covered, including confirmed and postulated mechanisms of action, structure activity relationships and molecular targets. Further, the clinical relevance of flavan-3-ols and available outcomes from clinical studies is analyzed and discussed. Among the numerous natural sources of flavan-3-ols and proanthocyanidins the most promising are, similarly to antibacterial properties, constituents of various foods, such as fruits of Vaccinium species, tea leaves, grape seeds, and tannin-rich medicinal herbs. Despite a vast amount of in vitro and cell-based evidence of immunomodulatory there are still only a few animal and clinical studies. Most of the reports, regardless of the used model, indicated the efficiency of these phytochemicals from cranberries and other Vaccinium species and tea extracts (green or black). Other sources such as grape seeds and traditional medicinal plants, were seldom. In conclusion, the potential of flavan-3-ols and their derivatives in prevention and alleviation of periodontal disease is remarkable but clinical evidence is urgently needed for issuing credible dietary recommendation and complementary treatments.


Assuntos
Flavonoides/farmacologia , Flavonoides/uso terapêutico , Imunomodulação/efeitos dos fármacos , Periodontite/tratamento farmacológico , Periodontite/prevenção & controle , Proantocianidinas/farmacologia , Proantocianidinas/uso terapêutico , Animais , Biomarcadores , Estudos Clínicos como Assunto , Citocinas/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Flavonoides/química , Humanos , Mediadores da Inflamação/metabolismo , Metaloproteinases da Matriz/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Periodontite/etiologia , Periodontite/metabolismo , Proantocianidinas/química , Resultado do Tratamento
19.
Food Chem ; 335: 127649, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32738538

RESUMO

Rosa rugosa Thunb. seed oil (RR) extracted by supercritical CO2 was investigated. RR chemical composition, radical scavenging effect and oxidative stability were evaluated. RR aqueous emulsions were examined for cell cytotoxicity, proliferation, redox state and migration using mouse embryonic fibroblast Balb/3T3, human dermal fibroblast NHDF cell lines, and on neoplastic cell lines: acute monocytic leukemia THP-1 and lung adenocarcinoma A549. RR total contents of phytosterols, tocopherols, carotenoids and phenolics were 10115.23, 784.16, 40.32 and 10.30 mg/kg, respectively. Rich antioxidant composition of RR was reflected in its high antioxidant activity (2.1 mM/kg Trolox equivalent) as well as oxidative stability (activation energy 105.6 kJ/mol). The RR emulsions led to marked augmentation of the total cell protein content in BALB/3T3 and NHDF cultures, inhibited cancer cell migration and reduced ROS formation. The studied RR oil proved to have a remarkable combination of bioactive compounds and to exert an antioxidative and chemopreventive effects.


Assuntos
Óleos de Plantas/química , Óleos de Plantas/farmacologia , Rosa/química , Animais , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Dióxido de Carbono/química , Carotenoides/química , Carotenoides/isolamento & purificação , Carotenoides/farmacologia , Linhagem Celular , Cromatografia com Fluido Supercrítico , Humanos , Camundongos , Oxirredução , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/farmacologia , Fitosteróis/química , Fitosteróis/isolamento & purificação , Fitosteróis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Óleos de Plantas/isolamento & purificação , Sementes/química , Tocoferóis/química , Tocoferóis/isolamento & purificação , Tocoferóis/farmacologia
20.
Mini Rev Med Chem ; 21(7): 816-832, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33213355

RESUMO

The search for mitochondria-targeted drugs has dramatically risen over the last decade. Mitochondria are essential organelles serving not only as a powerhouse of the cell but also as a key player in cell proliferation and cell death. Their central role in the energetic metabolism, calcium homeostasis and apoptosis makes them an intriguing field of interest for cancer pharmacology. In cancer cells, many mitochondrial signaling and metabolic pathways are altered. These changes contribute to cancer development and progression. Due to changes in mitochondrial metabolism and changes in membrane potential, cancer cells are more susceptible to mitochondria-targeted therapy. The loss of functional mitochondria leads to the arrest of cancer progression and/or a cancer cell death. Identification of mitochondrial changes specific for tumor growth and progression, rational development of new mitochondria-targeted drugs and research on delivery agents led to the advance of this promising area. This review will highlight the current findings in mitochondrial biology, which are important for cancer initiation, progression and resistance, and discuss approaches of cancer pharmacology with a special focus on the anti-cancer drugs referred to as 'mitocans'.


Assuntos
Antineoplásicos/farmacologia , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA