Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(W1): W85-W93, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32469073

RESUMO

Rapid progress in proteomics and large-scale profiling of biological systems at the protein level necessitates the continued development of efficient computational tools for the analysis and interpretation of proteomics data. Here, we present the piNET server that facilitates integrated annotation, analysis and visualization of quantitative proteomics data, with emphasis on PTM networks and integration with the LINCS library of chemical and genetic perturbation signatures in order to provide further mechanistic and functional insights. The primary input for the server consists of a set of peptides or proteins, optionally with PTM sites, and their corresponding abundance values. Several interconnected workflows can be used to generate: (i) interactive graphs and tables providing comprehensive annotation and mapping between peptides and proteins with PTM sites; (ii) high resolution and interactive visualization for enzyme-substrate networks, including kinases and their phospho-peptide targets; (iii) mapping and visualization of LINCS signature connectivity for chemical inhibitors or genetic knockdown of enzymes upstream of their target PTM sites. piNET has been built using a modular Spring-Boot JAVA platform as a fast, versatile and easy to use tool. The Apache Lucene indexing is used for fast mapping of peptides into UniProt entries for the human, mouse and other commonly used model organism proteomes. PTM-centric network analyses combine PhosphoSitePlus, iPTMnet and SIGNOR databases of validated enzyme-substrate relationships, for kinase networks augmented by DeepPhos predictions and sequence-based mapping of PhosphoSitePlus consensus motifs. Concordant LINCS signatures are mapped using iLINCS. For each workflow, a RESTful API counterpart can be used to generate the results programmatically in the json format. The server is available at http://pinet-server.org, and it is free and open to all users without login requirement.


Assuntos
Processamento de Proteína Pós-Traducional , Proteômica/métodos , Software , Animais , Gráficos por Computador , Enzimas/metabolismo , Humanos , Internet , Camundongos , Peptídeos/química , Peptídeos/metabolismo , Proteínas/química , Proteínas/metabolismo , Fluxo de Trabalho
2.
Methods Mol Biol ; 1558: 395-413, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28150249

RESUMO

Data-independent acquisition mass spectrometry (DIA-MS) strategies and applications provide unique advantages for qualitative and quantitative proteome probing of a biological sample allowing constant sensitivity and reproducibility across large sample sets. These advantages in LC-MS/MS are being realized in fundamental research laboratories and for clinical research applications. However, the ability to translate high-throughput raw LC-MS/MS proteomic data into biological knowledge is a complex and difficult task requiring the use of many algorithms and tools for which there is no widely accepted standard and best practices are slowly being implemented. Today a single tool or approach inherently fails to capture the full interpretation that proteomics uniquely supplies, including the dynamics of quickly reversible chemically modified states of proteins, irreversible amino acid modifications, signaling truncation events, and, finally, determining the presence of protein from allele-specific transcripts. This chapter highlights key steps and publicly available algorithms required to translate DIA-MS data into knowledge.


Assuntos
Biologia Computacional/métodos , Mineração de Dados/métodos , Espectrometria de Massas , Software , Redes Reguladoras de Genes , Peptídeos/análise , Peptídeos/química , Mapas de Interação de Proteínas , Interface Usuário-Computador , Navegador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA