Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 60: 103029, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32980688

RESUMO

BACKGROUND: Pathologist evaluation of donor liver biopsies provides information for accepting or discarding potential donor livers. Due to the urgent nature of the decision process, this is regularly performed using frozen sectioning at the time of biopsy. The percent steatosis in a donor liver biopsy correlates with transplant outcome, however there is significant inter- and intra-observer variability in quantifying steatosis, compounded by frozen section artifact. We hypothesized that a deep learning model could identify and quantify steatosis in donor liver biopsies. METHODS: We developed a deep learning convolutional neural network that generates a steatosis probability map from an input whole slide image (WSI) of a hematoxylin and eosin-stained frozen section, and subsequently calculates the percent steatosis. Ninety-six WSI of frozen donor liver sections from our transplant pathology service were annotated for steatosis and used to train (n = 30 WSI) and test (n = 66 WSI) the deep learning model. FINDINGS: The model had good correlation and agreement with the annotation in both the training set (r of 0.88, intraclass correlation coefficient [ICC] of 0.88) and novel input test sets (r = 0.85 and ICC=0.85). These measurements were superior to the estimates of the on-service pathologist at the time of initial evaluation (r = 0.52 and ICC=0.52 for the training set, and r = 0.74 and ICC=0.72 for the test set). INTERPRETATION: Use of this deep learning algorithm could be incorporated into routine pathology workflows for fast, accurate, and reproducible donor liver evaluation. FUNDING: Mid-America Transplant Society.


Assuntos
Aprendizado Profundo , Fígado Gorduroso/patologia , Doadores Vivos , Algoritmos , Biópsia , Fígado Gorduroso/diagnóstico por imagem , Secções Congeladas , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imuno-Histoquímica , Transplante de Fígado , Anotação de Sequência Molecular , Redes Neurais de Computação , Índice de Gravidade de Doença
2.
Chem Res Toxicol ; 32(8): 1707-1721, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31304741

RESUMO

Pediatric patients are at elevated risk of adverse drug reactions, and there is insufficient information on drug safety in children. Complicating risk assessment in children, there are numerous age-dependent changes in the absorption, distribution, metabolism, and elimination of drugs. A key contributor to age-dependent drug toxicity risk is the ontogeny of drug metabolism enzymes, the changes in both abundance and type throughout development from the fetal period through adulthood. Critically, these changes affect not only the overall clearance of drugs but also exposure to individual metabolites. In this study, we introduce time-embedding neural networks in order to model population-level variation in metabolism enzyme expression as a function of age. We use a time-embedding network to model the ontogeny of 23 drug metabolism enzymes. The time-embedding network recapitulates known demographic factors impacting 3A5 expression. The time-embedding network also effectively models the nonlinear dynamics of 2D6 expression, enabling a better fit to clinical data than prior work. In contrast, a standard neural network fails to model these features of 3A5 and 2D6 expression. Finally, we combine the time-embedding model of ontogeny with additional information to estimate age-dependent changes in reactive metabolite exposure. This simple approach identifies age-dependent changes in exposure to valproic acid and dextromethorphan metabolites and suggests potential mechanisms of valproic acid toxicity. This approach may help researchers evaluate the risk of drug toxicity in pediatric populations.


Assuntos
Neoplasias Hepáticas/metabolismo , Redes Neurais de Computação , Adolescente , Carboxilesterase/metabolismo , Criança , Pré-Escolar , Sistema Enzimático do Citocromo P-450/metabolismo , Glucuronosiltransferase/metabolismo , Glutationa Transferase/metabolismo , Humanos , Inativação Metabólica , Lactente , Oxigenases/metabolismo , Análise de Componente Principal , Sulfurtransferases/metabolismo , Fatores de Tempo
3.
Genet Med ; 21(4): 972-981, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287923

RESUMO

PURPOSE: Following automated variant calling, manual review of aligned read sequences is required to identify a high-quality list of somatic variants. Despite widespread use in analyzing sequence data, methods to standardize manual review have not been described, resulting in high inter- and intralab variability. METHODS: This manual review standard operating procedure (SOP) consists of methods to annotate variants with four different calls and 19 tags. The calls indicate a reviewer's confidence in each variant and the tags indicate commonly observed sequencing patterns and artifacts that inform the manual review call. Four individuals were asked to classify variants prior to, and after, reading the SOP and accuracy was assessed by comparing reviewer calls with orthogonal validation sequencing. RESULTS: After reading the SOP, average accuracy in somatic variant identification increased by 16.7% (p value = 0.0298) and average interreviewer agreement increased by 12.7% (p value < 0.001). Manual review conducted after reading the SOP did not significantly increase reviewer time. CONCLUSION: This SOP supports and enhances manual somatic variant detection by improving reviewer accuracy while reducing the interreviewer variability for variant calling and annotation.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/normas , Mutação/genética , Neoplasias/genética , Software , Algoritmos , Humanos , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único/genética , Alinhamento de Sequência
4.
IEEE Trans Med Imaging ; 37(12): 2718-2728, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29994669

RESUMO

Transplantable kidneys are in very limited supply. Accurate viability assessment prior to transplantation could minimize organ discard. Rapid and accurate evaluation of intra-operative donor kidney biopsies is essential for determining which kidneys are eligible for transplantation. The criterion for accepting or rejecting donor kidneys relies heavily on pathologist determination of the percent of glomeruli (determined from a frozen section) that are normal and sclerotic. This percentage is a critical measurement that correlates with transplant outcome. Inter- and intra-observer variability in donor biopsy evaluation is, however, significant. An automated method for determination of percent global glomerulosclerosis could prove useful in decreasing evaluation variability, increasing throughput, and easing the burden on pathologists. Here, we describe the development of a deep learning model that identifies and classifies non-sclerosed and sclerosed glomeruli in whole-slide images of donor kidney frozen section biopsies. This model extends a convolutional neural network (CNN) pre-trained on a large database of digital images. The extended model, when trained on just 48 whole slide images, exhibits slide-level evaluation performance on par with expert renal pathologists. Encouragingly, the model's performance is robust to slide preparation artifacts associated with frozen section preparation. The model substantially outperforms a model trained on image patches of isolated glomeruli, in terms of both accuracy and speed. The methodology overcomes the technical challenge of applying a pretrained CNN bottleneck model to whole-slide image classification. The traditional patch-based approach, while exhibiting deceptively good performance classifying isolated patches, does not translate successfully to whole-slide image segmentation in this setting. As the first model reported that identifies and classifies normal and sclerotic glomeruli in frozen kidney sections, and thus the first model reported in the literature relevant to kidney transplantation, it may become an essential part of donor kidney biopsy evaluation in the clinical setting.


Assuntos
Aprendizado Profundo , Glomerulonefrite/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Rim/diagnóstico por imagem , Transplantes/diagnóstico por imagem , Algoritmos , Secções Congeladas , Humanos , Transplante de Rim
6.
Blood ; 129(4): 473-483, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28064239

RESUMO

Follicular lymphoma (FL) is the most common form of indolent non-Hodgkin lymphoma, yet it remains only partially characterized at the genomic level. To improve our understanding of the genetic underpinnings of this incurable and clinically heterogeneous disease, whole-exome sequencing was performed on tumor/normal pairs from a discovery cohort of 24 patients with FL. Using these data and mutations identified in other B-cell malignancies, 1716 genes were sequenced in 113 FL tumor samples from 105 primarily treatment-naive individuals. We identified 39 genes that were mutated significantly above background mutation rates. CREBBP mutations were associated with inferior PFS. In contrast, mutations in previously unreported HVCN1, a voltage-gated proton channel-encoding gene and B-cell receptor signaling modulator, were associated with improved PFS. In total, 47 (44.8%) patients harbor mutations in the interconnected B-cell receptor (BCR) and CXCR4 signaling pathways. Histone gene mutations were more frequent than previously reported (identified in 43.8% of patients) and often co-occurred (17.1% of patients). A novel, recurrent hotspot was identified at a posttranslationally modified residue in the histone H2B family. This study expands the number of mutated genes described in several known signaling pathways and complexes involved in lymphoma pathogenesis (BCR, Notch, SWitch/sucrose nonfermentable (SWI/SNF), vacuolar ATPases) and identified novel recurrent mutations (EGR1/2, POU2AF1, BTK, ZNF608, HVCN1) that require further investigation in the context of FL biology, prognosis, and treatment.


Assuntos
Proteína de Ligação a CREB/genética , Regulação Neoplásica da Expressão Gênica , Canais Iônicos/genética , Linfoma Folicular/genética , Receptores de Antígenos de Linfócitos B/genética , Transdução de Sinais/genética , Adulto , Tirosina Quinase da Agamaglobulinemia , Idoso , Idoso de 80 Anos ou mais , Proteína de Ligação a CREB/metabolismo , Intervalo Livre de Doença , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Feminino , Perfilação da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Humanos , Canais Iônicos/metabolismo , Linfoma Folicular/diagnóstico , Linfoma Folicular/mortalidade , Linfoma Folicular/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética , Transativadores/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
7.
J Biomol Screen ; 19(5): 782-90, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24563424

RESUMO

Small-molecule screens are an integral part of drug discovery. Public domain data in PubChem alone represent more than 158 million measurements, 1.2 million molecules, and 4300 assays. We conducted a global analysis of these data, building a network of assays and connecting the assays if they shared nonpromiscuous active molecules. This network spans both phenotypic and target-based screens, recapitulates known biology, and identifies new polypharmacology. Phenotypic screens are extremely important for drug discovery, contributing to the discovery of a large proportion of new drugs. Connections between phenotypic and biochemical, target-based screens can suggest strategies for repurposing both small-molecule and biologic drugs. For example, a screen for molecules that prevent cell death from a mutated version of superoxide-dismutase is linked with ALOX15. This connection suggests a therapeutic role for ALOX15 inhibitors in amyotrophic lateral sclerosis. An interactive version of the network is available online (http://swami.wustl.edu/flow/assay_network.html).


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Bioensaio/métodos , Descoberta de Drogas , Ensaios de Triagem em Larga Escala/métodos , Algoritmos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Araquidonato 15-Lipoxigenase/química , Araquidonato 15-Lipoxigenase/genética , Área Sob a Curva , Humanos , Inibidores de Lipoxigenase/química , Modelos Estatísticos , Mutação , Fenótipo , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA