Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Res Int ; 2019: 2492315, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214612

RESUMO

Skin secretions of frogs have a high chemical complexity. They have diverse types of biomolecules, such as proteins, peptides, biogenic amines, and alkaloids. These compounds protect amphibians' skin against growth of bacteria, fungi, and protozoa and participate in defense system against attack from predators. Therewith, this work performed biochemical and biological profile of macroglands parotoid secretion from cane toad. For poison analysis, we performed molecular exclusion and reverse phase chromatography, electrophoresis, and mass spectrometry. Antimicrobial, antiplasmodial, leishmanicidal, cytotoxicity, genotoxicity, and inflammatory activity of crude and/or fractions of R. marina secretion were also evaluated. Fractionation prior to filtration from poison showed separation of low mass content (steroids and alkaloids) and high molecular mass (protein). Material below 10 kDa two steroids, marinobufagin and desacetylcinobufagin, was detected. Crude extract and fractions were active against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Plasmodium falciparum, Leishmania guyanensis, and Leishmania braziliensis. Crude extract was also active against cancer cells although it was not cytotoxic for normal cells. This extract did not show significant DNA damage but it showed an important inflammatory effect in vivo. The information obtained in this work contributes to the understanding of the constituents of R. marina secretion as well as the bioactive potential of these molecules.


Assuntos
Antibacterianos , Bufanolídeos , Glândula Parótida/metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pele/metabolismo , Staphylococcus aureus/crescimento & desenvolvimento , Animais , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bufanolídeos/química , Bufanolídeos/metabolismo , Bufanolídeos/farmacologia , Bufo marinus
2.
Basic Clin Pharmacol Toxicol ; 122(4): 413-423, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29067765

RESUMO

Snake venom phospholipases A2 (PLA2 s) are responsible for numerous pathophysiological effects in snakebites; however, their biochemical properties favour antimicrobial actions against different pathogens, thus constituting a true source of potential microbicidal agents. This study describes the isolation of a Lys49 PLA2 homologue from Lachesis muta muta venom using two chromatographic steps: size exclusion and reverse phase. The protein showed a molecular mass of 13,889 Da and was devoid of phospholipase activity on an artificial substrate. The primary structure made it possible to identify an unpublished protein from L. m. muta venom, named LmutTX, that presented high identity with other Lys49 PLA2 s from bothropic venoms. Synthetic peptides designed from LmutTX were evaluated for their cytotoxic and antimicrobial activities. LmutTX was cytotoxic against C2C12 myotubes at concentrations of at least 200 µg/mL, whereas the peptides showed a low cytolytic effect. LmutTX showed antibacterial activity against Gram-positive and Gram-negative bacteria; however, S. aureusATCC 29213 and MRSA strains were more sensitive to the toxin's action. Synthetic peptides were tested on S. aureus, MRSA and P. aeruginosaATCC 27853 strains, showing promising results. This study describes for the first time the isolation of a Lys49 PLA2 from Lachesis snake venom and shows that peptides from specific regions of the sequence may constitute new sources of molecules with biotechnological potential.


Assuntos
Antibacterianos/farmacologia , Venenos de Crotalídeos/enzimologia , Fosfolipases A2/química , Viperidae , Animais , Antibacterianos/síntese química , Cromatografia em Gel/métodos , Cromatografia de Fase Reversa/métodos , Venenos de Crotalídeos/química , Desenho de Fármacos , Ensaios Enzimáticos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Peptídeos/síntese química , Peptídeos/farmacologia , Fosfolipases A2/isolamento & purificação , Pseudomonas aeruginosa/efeitos dos fármacos
3.
Toxicon ; 115: 13-21, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26927324

RESUMO

Snake venom is a complex mixture of active compounds consisting of 80-90% proteins and peptides that exhibit a variety of biological actions that are not completely clarified or identified. Of these, phospholipase A2 is one of the molecules that has shown great biotechnological potential. The objectives of this study were to isolate, biochemically and biologically characterize a Lys49 phospholipase A2 homologue from the venom of Bothrops neuwiedi urutu. The protein was purified after two chromatographic steps, anion exchange and reverse phase. The purity and relative molecular mass were assessed by SDS-PAGE, observing a molecular weight typical of PLA2s, subsequently confirmed by mass spectrometry obtaining a mass of 13,733 Da. As for phospholipase activity, the PLA2 proved to be enzymatically inactive. The analyses by Edman degradation and sequencing of the peptide fragments allowed for the identification of 108 amino acid residues; this sequence showed high identity with other phospholipases A2 from Bothrops snake venoms, and identified this molecule as a novel PLA2 isoform from B. neuwiedi urutu venom, called BnuTX-I. In murine models, both BnuTX-I as well as the venom induced edema and myotoxic responses. The cytotoxic effect of BnuTX-I in murine macrophages was observed at concentrations above 12 µg/mL. BnuTX-I also presented antimicrobial activity against gram-positive and negative bacterial strains, having the greatest inhibitory effect on Pseudomonas aeruginosa. The results allowed for the identification of a new myotoxin isoform with PLA2 structure with promising biotechnological applications.


Assuntos
Antibacterianos/farmacologia , Bothrops/metabolismo , Venenos de Crotalídeos/química , Fosfolipases A2/farmacologia , Sequência de Aminoácidos , Animais , Antibacterianos/química , Sobrevivência Celular/efeitos dos fármacos , Venenos de Crotalídeos/isolamento & purificação , Venenos de Crotalídeos/farmacologia , Edema/sangue , Edema/induzido quimicamente , Edema/patologia , Eletroforese em Gel de Poliacrilamida , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Interleucina-1beta/sangue , Masculino , Camundongos , Fosfolipases A2/química , Conformação Proteica , Pseudomonas aeruginosa/efeitos dos fármacos , Alinhamento de Sequência , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA