Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175498

RESUMO

Viroids are small, non-coding, pathogenic RNAs with the ability to disturb plant developmental processes. This dysregulation redirects the morphogenesis of plant organs, significantly impairing their functionality. Citrus bark cracking viroid (CBCVd) causes detrimental developmental distortions in infected hops (Humulus lupulus) and causes significant economic losses. CBCVd can infect cells and tissues of the model plant tobacco (Nicotiana tabacum), provided it is delivered via transgenesis. The levels of CBCVd in tobacco were enhanced in plant hybrids expressing CBCVd cDNAs and either the tobacco or hop variant of TFIIIA-7ZF, a viroid-mediated splicing derivative of transcription factor IIIA, which is important for viroid replication by DNA-dependent RNA polymerase II. The TFIIIA-7ZF variants can change the tobacco morphogenesis if expressed in leaves and shoots. In addition to the splitting of shoots, the "pathomorphogenic" network in hybrid plants expressing CBCVd and HlTFIIIA-7ZF induced leaf fusions and malformations. Moreover, CBCVd can dramatically change another morphogenesis into teratomic and petal-like tissues if propagated above some limit in young transgenic tobacco microspores and anthers. By comparative RNA profiling of transgenic tobacco shoots bearing TFIIIA-7ZFs and CBCVd-transformed/infected anthers, we found a differential expression of many genes at p < 0.05. As the main common factor showing the differential up-regulation in shoot and anther tissues, a LITTLE ZIPPER 2-like transcription factor was found. We propose that this factor, which can interact as a competitive inhibitor of the also dysregulated homeobox-leucin zipper family protein (HD-ZIPIII) in apical meristem, is essential for a network responsible for some morphological changes and modifications of plant degradome within shoot meristem regulation and secondary xylem differentiation.


Assuntos
Citrus , Humulus , Pequeno RNA não Traduzido , Viroides , Viroides/metabolismo , Fator de Transcrição TFIIIA/genética , Fator de Transcrição TFIIIA/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Casca de Planta/metabolismo , Doenças das Plantas/genética , Humulus/genética , Citrus/metabolismo
2.
Plant Physiol Biochem ; 197: 107636, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36958151

RESUMO

Hop (Humulus lupulus) biosynthesizes the highly economically valuable secondary metabolites, which include flavonoids, bitter acids, polyphenols and essential oils. These compounds have important pharmacological properties and are widely implicated in the brewing industry owing to bittering flavor, floral aroma and preservative activity. Our previous studies documented that ternary MYB-bHLH-WD40 (MBW) and binary WRKY1-WD40 (WW) protein complexes transcriptionally regulate the accumulation of bitter acid (BA) and prenylflavonoids (PF). In the present study, we investigated the regulatory functions of the R2R3-MYB repressor HlMYB7 transcription factor, which contains a conserved N-terminal domain along with the repressive motif EAR, in regulating the PF- and BA-biosynthetic pathway and their accumulation in hop. Constitutive expression of HlMYB7 resulted in transcriptional repression of structural genes involved in the terminal steps of biosynthesis of PF and BA, as well as stunted growth, delayed flowering, and reduced tolerance to viroid infection in hop. Furthermore, yeast two-hybrid and transient reporter assays revealed that HlMYB7 targets both PF and BA pathway genes and suppresses MBW and WW protein complexes. Heterologous expression of HlMYB7 leads to down-regulation of structural genes of flavonoid pathway in Arabidopsis thaliana, including a decrease in anthocyanin content in Nicotiana tabacum. The combined results from functional and transcriptomic analyses highlight the important role of HlMYB7 in fine-tuning and balancing the accumulation of secondary metabolites at the transcriptional level, thus offer a plausible target for metabolic engineering in hop.


Assuntos
Arabidopsis , Humulus , Fatores de Transcrição/metabolismo , Flavonoides/metabolismo , Humulus/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Cells ; 11(5)2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269406

RESUMO

Viroids are small, non-coding, pathogenic RNAs with a significant ability of adaptation to several basic cellular processes in plants. TFIIIA-7ZF, a splicing variant of transcription factor IIIA, is involved in replication of nuclear-replicating viroids by DNA-dependent polymerase II. We overexpressed NbTFIIIA-7ZF from Nicotiana benthamiana in tobacco (Nicotiana tabacum) where it caused morphological and physiological deviations like plant stunting, splitting of leaf petioles, pistils or apexes, irregular branching of shoots, formation of double-blade leaves, deformation of main stems, and modification of glandular trichomes. Plant aging and senescence was dramatically delayed in transgenic lines. Factors potentially involved in viroid degradation and elimination in pollen were transiently depressed in transgenic leaves. This depressed "degradome" in young plants involved NtTudor S-like nuclease, dicers, argonoute 5, and pollen extracellular nuclease I showing expression in tobacco anthers and leaves. Analysis of the "degradome" in tobacco leaves transformed with either of two hop viroids confirmed modifications of the "degradome" and TFIIIA expression. Thus, the regulatory network connected to TFIIIA-7ZF could be involved in plant pathogenesis as well as in viroid adaptation to avoid its degradation. These results support the hypothesis on a significant impact of limited TFIIIA-7ZF on viroid elimination in pollen.


Assuntos
Pequeno RNA não Traduzido , Viroides , Pólen/genética , Nicotiana/genética , Uso de Tabaco , Fator de Transcrição TFIIIA , Viroides/genética
4.
Plants (Basel) ; 10(11)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34834761

RESUMO

Viroids are small, non-coding, parasitic RNAs that promote developmental distortions in sensitive plants. We analyzed pollen of Nicotiana benthamiana after infection and/or ectopic transformation with cDNAs of citrus bark cracking viroid (CBCVd), apple fruit crinkle viroid (AFCVd) and potato spindle tuber viroid (PSTVd) variant AS1. These viroids were seed non-transmissible in N. benthamiana. All viroids propagated to high levels in immature anthers similar to leaves, while their levels were drastically reduced by approximately 3.6 × 103, 800 and 59 times in mature pollen of CBCVd, AFCVd and PSTVd infected N. benthamiana, respectively, in comparison to leaves. These results suggest similar elimination processes during male gametophyte development as in the Nicotiana tabacum we presented in our previous study. Mature pollen of N. benthamiana showed no apparent defects in infected plants although all three viroids induced strong pathological symptoms on leaves. While Nicotiana species have naturally bicellular mature pollen, we noted a rare occurrence of mature pollen with three nuclei in CBCVd-infected N. benthamiana. Changes in the expression of ribosomal marker proteins in AFCVd-infected pollen were detected, suggesting some changes in pollen metabolism. N. benthamiana transformed with 35S-driven viroid cDNAs showed strong symptoms including defects in pollen development. A large number of aborted pollen (34% and 62%) and a slight increase of young pollen grains (8% and 15%) were found in mature pollen of AFCVd and CBCVd transformants, respectively, in comparison to control plants (3.9% aborted pollen and 0.3% young pollen). Moreover, pollen grains with malformed nuclei or trinuclear pollen were found in CBCVd-transformed plants. Our results suggest that "forcing" overexpression of seed non-transmissible viroid led to strong pollen pathogenesis. Viroid adaptation to pollen metabolism can be assumed as an important factor for viroid transmissibility through pollen and seeds.

5.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218043

RESUMO

Tobacco (Nicotiana tabacum) pollen is a well-suited model for studying many fundamental biological processes owing to its well-defined and distinct development stages. It is also one of the major agents involved in the transmission of infectious viroids, which is the primary mechanism of viroid pathogenicity in plants. However, some viroids are non-transmissible and may be possibly degraded or eliminated during the gradual process of pollen development maturation. The molecular details behind the response of developing pollen against the apple fruit crinkle viroid (AFCVd) infection and viroid eradication is largely unknown. In this study, we performed an integrative analysis of the transcriptome and proteome profiles to disentangle the molecular cascade of events governing the three pollen development stages: early bicellular pollen (stage 3, S3), late bicellular pollen (stage 5, S5), and 6 h-pollen tube (PT6). The integrated analysis delivered the molecular portraits of the developing pollen against AFCVd infection, including mechanistic insights into the viroid eradication during the last steps of pollen development. The isobaric tags for label-free relative quantification (iTRAQ) with digital gene expression (DGE) experiments led us to reliably identify subsets of 5321, 5286, and 6923 proteins and 64,033, 60,597, and 46,640 expressed genes in S3, S5, and PT6, respectively. In these subsets, 2234, 2108 proteins and 9207 and 14,065 mRNAs were differentially expressed in pairwise comparisons of three stages S5 vs. S3 and PT6 vs. S5 of control pollen in tobacco. Correlation analysis between the abundance of differentially expressed mRNAs (DEGs) and differentially expressed proteins (DEPs) in pairwise comparisons of three stages of pollen revealed numerous discordant changes in mRNA/protein pairs. Only a modest correlation was observed, indicative of divergent transcription, and its regulation and importance of post-transcriptional events in the determination of the fate of early and late pollen development in tobacco. The functional and enrichment analysis of correlated DEGs/DEPs revealed the activation in pathways involved in carbohydrate metabolism, amino acid metabolism, lipid metabolism, and cofactor as well as vitamin metabolism, which points to the importance of these metabolic pathways in pollen development. Furthermore, the detailed picture of AFCVd-infected correlated DEGs/DEPs was obtained in pairwise comparisons of three stages of infected pollen. The AFCVd infection caused the modulation of several genes involved in protein degradation, nuclear transport, phytohormone signaling, defense response, and phosphorylation. Intriguingly, we also identified several factors including, DNA-dependent RNA-polymerase, ribosomal protein, Argonaute (AGO) proteins, nucleotide binding proteins, and RNA exonucleases, which may plausibly involve in viroid stabilization and eradication during the last steps of pollen development. The present study provides essential insights into the transcriptional and translational dynamics of tobacco pollen, which further strengthens our understanding of plant-viroid interactions and support for future mechanistic studies directed at delineating the functional role of candidate factors involved in viroid elimination.


Assuntos
Diferenciação Celular , Perfilação da Expressão Gênica , Nicotiana , Doenças das Plantas/virologia , Vírus de Plantas/metabolismo , Pólen , Proteômica , Viroides/metabolismo , Pólen/metabolismo , Pólen/virologia , Nicotiana/metabolismo , Nicotiana/virologia
6.
Int J Mol Sci ; 21(8)2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344786

RESUMO

Some viroids-single-stranded, non-coding, circular RNA parasites of plants-are not transmissible through pollen to seeds and to next generation. We analyzed the cause for the elimination of apple fruit crinkle viroid (AFCVd) and citrus bark cracking viroid (CBCVd) from male gametophyte cells of Nicotiana tabacum by RNA deep sequencing and molecular methods using infected and transformed tobacco pollen tissues at different developmental stages. AFCVd was not transferable from pollen to seeds in reciprocal pollinations, due to a complete viroid eradication during the last steps of pollen development and fertilization. In pollen, the viroid replication pathway proceeds with detectable replication intermediates, but is dramatically depressed in comparison to leaves. Specific and unspecific viroid degradation with some preference for (-) chains occurred in pollen, as detected by analysis of viroid-derived small RNAs, by quantification of viroid levels and by detection of viroid degradation products forming "comets" on Northern blots. The decrease of viroid levels during pollen development correlated with mRNA accumulation of several RNA-degrading factors, such as AGO5 nuclease, DICER-like and TUDOR S-like nuclease. In addition, the functional status of pollen, as a tissue with high ribosome content, could play a role during suppression of AFCVd replication involving transcription factors IIIA and ribosomal protein L5.


Assuntos
Nicotiana/virologia , Doenças das Plantas/virologia , Pólen/virologia , Viroides , Interações Hospedeiro-Patógeno , Conformação de Ácido Nucleico , Fenótipo , RNA Viral , Carga Viral , Replicação Viral
7.
Int J Mol Sci ; 21(7)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260277

RESUMO

The mediator (MED) represents a large, conserved, multi-subunit protein complex that regulates gene expression through interactions with RNA polymerase II and enhancer-bound transcription factors. Expanding research accomplishments suggest the predominant role of plant MED subunits in the regulation of various physiological and developmental processes, including the biotic stress response against bacterial and fungal pathogens. However, the involvement of MED subunits in virus/viroid pathogenesis remains elusive. In this study, we investigated for the first time the gene expression modulation of selected MED subunits in response to five viroid species (Apple fruit crinkle viroid (AFCVd), Citrus bark cracking viroid (CBCVd), Hop latent viroid (HLVd), Hop stunt viroid (HSVd), and Potato spindle tuber viroid (PSTVd)) in two model plant species (Nicotiana tabacum and N. benthamiana) and a commercially important hop (Humulus lupulus) cultivar. Our results showed a differential expression pattern of MED subunits in response to a viroid infection. The individual plant MED subunits displayed a differential and tailored expression pattern in response to different viroid species, suggesting that the MED expression is viroid- and plant species-dependent. The explicit evidence obtained from our results warrants further investigation into the association of the MED subunit with symptom development. Together, we provide a comprehensive portrait of MED subunit expression in response to viroid infection and a plausible involvement of MED subunits in fine-tuning transcriptional reprogramming in response to viroid infection, suggesting them as a potential candidate for rewiring the defense response network in plants against pathogens.


Assuntos
Humulus/virologia , Complexo Mediador/genética , Nicotiana/virologia , Viroides/patogenicidade , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Humulus/genética , Folhas de Planta/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Vírus de Plantas , Especificidade da Espécie , Nicotiana/genética , Viroides/genética
8.
Plant Sci ; 276: 152-161, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30348313

RESUMO

A unique analysis of an enzyme activity versus structure modification of the tomato nuclease R-TBN1 is presented. R-TBN1, the non-specific nuclease belonging to the S1-P1 nuclease family, was recombinantly produced in N. benthamiana. The native structure is posttranslationally modified by N-glycosylation at three sites. In this work, it was found that this nuclease is modified by high-mannose type N-glycosylation with a certain degree of macro- and microheterogeneity. To monitor the role of N-glycosylation in its activity, hypo- and hyperglycosylated nuclease mutants, R-TBN1 digested by α-mannosidase, and R-TBN1 deglycosylated by PNGase F were prepared. Deglycosylated R-TBN1 and mutant N94D/N112D were virtually inactive. Compared to R-TBN1 wt, both N94D and N112D mutants showed about 60% and 10% of the activity, respectively, while the N186D, D36S, and D36S/E104 N mutants were equally or even more active than R-TBN1 wt. The partial demannosylation of R-TBN1 did not affect the nuclease activity; moreover, a little shift in substrate specificity was observed. The results show two facts: 1) which sites must be occupied by a glycan for the proper folding and stability and 2) how N. benthamiana glycosylates the foreign nuclease. At the same time, the modifications can be interesting in designing the nuclease activity or specificity through its glycosylation.


Assuntos
Desoxirribonucleases/metabolismo , Nicotiana/enzimologia , Solanum lycopersicum/enzimologia , Desoxirribonucleases/genética , Glicosilação , Solanum lycopersicum/genética , Espectrometria de Massas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes , Especificidade por Substrato , Nicotiana/genética , Transgenes
9.
Plant Sci ; 269: 32-46, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29606215

RESUMO

Hop is an important source of medicinally valuable secondary metabolites including bioactive prenylated chalcones. To gain in-depth knowledge of the regulatory mechanisms of hop flavonoids biosynthesis, full-length cDNA of HlMyb8 transcription factor gene was isolated from lupulin glands. The deduced amino acid sequence of HlMyb8 showed high similarity to a flavonol-specific regulator of phenylpropanoid biosynthesis AtMYB12 from Arabidopsis thaliana. Transient expression studies and qRT-PCR analysis of transgenic hop plants overexpressing HlMyb8 revealed that HlMYB8 activates expression of chalcone synthase HlCHS_H1 as well as other structural genes from the flavonoid pathway branch leading to the production of flavonols (F3H, F'3H, FLS) but not prenylflavonoids (PT1, OMT1) or bitter acids (VPS, PT1). HlMyb8 could cross-activate Arabidopsis flavonol-specific genes but to a much lesser extent than AtMyb12. Reciprocally, AtMyb12 could cross-activate hop flavonol-specific genes. Transcriptome sequence analysis of hop leaf tissue overexpressing HlMyb8 confirmed the modulation of several other genes related to flavonoid biosynthesis pathways (PAL, 4CL, ANR, DFR, LDOX). Analysis of metabolites in hop female cones confirmed that overexpression of HlMyb8 does not increase prenylflavonoid or bitter acids content in lupulin glands. It follows from our results that HlMYB8 plays role in a competition between flavonol and prenylflavonoid or bitter acid pathways by diverting the flux of CHS_H1 gene product and thus, may influence the level of these metabolites in hop lupulin.


Assuntos
Flavonoides/biossíntese , Humulus/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Perfilação da Expressão Gênica , Humulus/metabolismo , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Alinhamento de Sequência , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
10.
Plant Mol Biol ; 92(3): 263-77, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27392499

RESUMO

Lupulin glands localized in female hop (Humulus lupulus L.) cones are valuable source of bitter acids, essential oils and polyphenols. These compounds are used in brewing industry and are important for biomedical applications. In this study we describe the potential effect of transcription factors from WRKY family in the activation of the final steps of lupulin biosynthesis. In particular, lupulin gland-specific transcription factor HlWRKY1 that shows significant similarity to AtWRKY75, has ability to activate the set of promoters driving key genes of xanthohumol and bitter acids biosynthesis such as chalcone synthase H1, valerophenone synthase, prenyltransferase 1, 1L and 2 and O-methyltransferase-1. When combined with co-factor HlWDR1 and silencing suppressor p19, HlWRKY1 is able to enhance transient expression of gus gene driven by Omt1 and Chs_H1 promoters to significant level as compared to 35S promoter of CaMV in Nicotiana. benthamiana. Transformation of hop with dual Agrobacterium vector bearing HlWRKY1/HlWDR1 led to ectopic overexpression of these transgenes and further activation of lupulin-specific genes expression in hop leaves. It was further showed that (1) HlWRKY1 is endowed with promoter autoactivation; (2) It is regulated by post-transcriptional gene silencing (PTGS) mechanism; (3) It is stimulated by kinase co-expression. Since HlWRKY1 promotes expression of lupulin-specific HlMyb3 gene therefore it can constitute a significant component in hop lupulin regulation network. Putative involvement of HlWRKY1 in the regulation of lupulin biosynthesis may suggest the original physiological function of lupulin components in hop as flower and seed protective compounds.


Assuntos
Regulação da Expressão Gênica de Plantas , Humulus/genética , Humulus/metabolismo , Proteínas de Plantas/metabolismo , Terpenos , Fatores de Transcrição/metabolismo , Inativação Gênica/fisiologia , Humulus/enzimologia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética
11.
J Plant Physiol ; 183: 85-94, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26118459

RESUMO

Potato spindle tuber viroid (PSTVd) belongs to plant-pathogenic, circular, non-coding RNAs. Its propagation is accompanied by (mis)regulation of host genes and induction of pathogenesis symptoms including changes of leaf morphogenesis depending on the strength of viroid variant. We found strong genotype-dependent suppression of tomato morphogenesis-regulating transcription factor SANT/HTH-Myb (SlMyb) due to viroid pathogenesis. Its relative mRNA level was found to be significantly decreased in PSTVd-sensitive tomato (cvs Rutgers and Heinz 1706) due to degradation processes, but increased in PSTVd-tolerant (cv. Harzfeuer). In heterologous system of Nicotiana benthamiana, we observed a SlMyb-associated necrotic effect in agroinfiltrated leaf sectors during ectopic overexpression. Leaf sector necroses were accompanied by activation of nucleolytic enzymes but were suppressed by a strongly pathogenic PSTVd variant. Contrary to that, PSTVd's effect was inhibited by the silencing suppressor p19. It was found that in both, Solanum lycopersicum leaves and N. benthamiana leaf sectors, SlMyb mRNA degradation was significantly stronger in viroid-infected tissues. Necroses induction as well as gene silencing experiments using the SANT/HTH-Myb homologues revealed involvement of this Myb in physiological changes like distortions in flower morphogenesis and growth suppression.


Assuntos
Nicotiana/genética , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Fatores de Transcrição/genética , Viroides/genética , Interações Hospedeiro-Patógeno , Solanum lycopersicum/metabolismo , Solanum lycopersicum/virologia , Dados de Sequência Molecular , Doenças das Plantas/genética , Doenças das Plantas/virologia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Análise de Sequência de RNA , Nicotiana/metabolismo , Nicotiana/virologia , Fatores de Transcrição/metabolismo , Viroides/patogenicidade , Viroides/fisiologia
12.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 2): 213-26, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23385457

RESUMO

Type I plant nucleases play an important role in apoptotic processes and cell senescence. Recently, they have also been indicated to be potent anticancer agents in in vivo studies. The first structure of tomato nuclease I (TBN1) has been determined, its oligomerization and activity profiles have been analyzed and its unexpected activity towards phospholipids has been discovered, and conclusions are drawn regarding its catalytic mechanism. The structure-solution process required X-ray diffraction data from two crystal forms. The first form was used for phase determination; the second form was used for model building and refinement. TBN1 is mainly α-helical and is stabilized by four disulfide bridges. Three observed oligosaccharides are crucial for its stability and solubility. The active site is localized at the bottom of the positively charged groove and contains a zinc cluster that is essential for enzymatic activity. An equilibrium between monomers, dimers and higher oligomers of TBN1 was observed in solution. Principles of the reaction mechanism of the phosphodiesterase activity are suggested, with central roles for the zinc cluster, the nucleobase-binding pocket (Phe-site) and Asp70, Arg73 and Asn167. Based on the distribution of surface residues, possible binding sites for dsDNA and other nucleic acids with secondary structure were identified. The phospholipase activity of TBN1, which is reported for the first time for a nuclease, significantly broadens the substrate promiscuity of the enzyme, and the resulting release of diacylglycerol, which is an important second messenger, can be related to the role of TBN1 in apoptosis.


Assuntos
Desoxirribonucleases/química , Complexos Multienzimáticos/química , Fosfolipases/química , Proteínas de Plantas/química , Solanum lycopersicum/enzimologia , Animais , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Desoxirribonucleases/metabolismo , Humanos , Camundongos , Complexos Multienzimáticos/metabolismo , Fosfolipases/metabolismo , Proteínas de Plantas/metabolismo , Relação Estrutura-Atividade
13.
Biol Chem ; 393(7): 605-15, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22944665

RESUMO

Viroid-caused pathogenesis is a specific process dependent on viroid and host genotype(s), and may involve viroid-specific small RNAs (vsRNAs). We describe a new PSTVd variant C3, evolved through sequence adaptation to the host chamomile (Matricaria chamomilla) after biolistic inoculation with PSTVd-KF440-2, which causes extraordinary strong ('lethal') symptoms. The deletion of a single adenine A in the oligoA stretch of the pathogenicity (P) domain appears characteristic of PSTVd-C3. The pathogenicity and the vsRNA pool of PSTVd-C3 were compared to those of lethal variant PSTVd-AS1, from which PSTVd-C3 differs by five mutations located in the P domain. Both lethal viroid variants showed higher stability and lower variation in analyzed vsRNA pools than the mild PSTVd-QFA. PSTVd-C3 and -AS1 caused similar symptoms on chamomile, tomato, and Nicotiana benthamiana, and exhibited similar but species-specific distributions of selected vsRNAs as quantified using TaqMan probes. Both lethal PSTVd variants block biosynthesis of lignin in roots of cultured chamomile and tomato. Four 'expression markers' (TCP3, CIPK, VSF-1, and VPE) were selected from a tomato EST library to quantify their expression upon viroid infection; these markers were strongly downregulated in tomato leaf blades infected by PSTVd-C3- and -AS1 but not by PSTVd-QFA.


Assuntos
Adaptação Fisiológica , Evolução Molecular , Matricaria/virologia , Solanum tuberosum/virologia , Viroides/genética , Viroides/fisiologia , Sequência de Bases , Marcadores Genéticos/genética , Interações Hospedeiro-Patógeno , Lignina/metabolismo , Solanum lycopersicum/virologia , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/genética , RNA Viral/genética , Solanum tuberosum/metabolismo , Termodinâmica , Viroides/patogenicidade
14.
Plant Sci ; 180(2): 343-51, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21421379

RESUMO

Biochemical and structural properties of three recombinant (R), highly homologous, plant bifunctional nucleases from tomato (R-TBN1), hop (R-HBN1) and Arabis brassica (R-ABN1) were determined. These nucleases cleave single- and double-stranded substrates, as well as both RNA and DNA with nearly the same efficiency. In addition, they are able to cleave several artificial substrates and highly stable viroid RNA. They also possess 3'-nucleotidase activity; therefore, they can be classified as nuclease I family members. Interestingly, poly(G) is resistant to cleavage and moreover it inhibits dsDNase, ssDNase and RNase activity of the studied nucleases. All three nucleases exhibit zinc-dependence and a strong stimulatory effect of Zn²+ for dsDNA cleavage. 3-D models, predicted on the basis of experimental structure of P1 nuclease, show nine amino acid residues responsible for interactions with zinc atoms, located in the same positions as in P1 nuclease. It was also shown that R-TBN1, R-HBN1, and R-ABN1 are all N-glycosylated. Oligosaccharidic chains constitute about 16% of their MW. In addition, an anticancer potential of the R-ABN1 is compared in this work with previously tested R-TBN1, and R-HBN1. R-ABN1 injected intravenously showed 70% inhibitory effect on growth of human prostate carcinoma in athymic mice.


Assuntos
Antineoplásicos/metabolismo , Proliferação de Células/efeitos dos fármacos , Desoxirribonucleases/metabolismo , Proteínas de Plantas/metabolismo , Ribonucleases/metabolismo , Sequência de Aminoácidos , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Arabis/enzimologia , Desoxirribonucleases/química , Desoxirribonucleases/isolamento & purificação , Desoxirribonucleases/farmacologia , Glicosilação , Humanos , Humulus/enzimologia , Concentração de Íons de Hidrogênio , Solanum lycopersicum/enzimologia , Camundongos , Camundongos Nus , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Ribonucleases/química , Ribonucleases/isolamento & purificação , Ribonucleases/farmacologia , Alinhamento de Sequência , Especificidade por Substrato , Temperatura , Nicotiana/enzimologia , Nicotiana/genética
15.
Artigo em Inglês | MEDLINE | ID: mdl-21206042

RESUMO

The endonuclease TBN1 from Solanum lycopersicum (tomato) was expressed in Nicotiana benthamiana leaves and purified with suitable quality and in suitable quantities for crystallization experiments. Two crystal forms (orthorhombic and rhombohedral) were obtained and X-ray diffraction experiments were performed. The presence of natively bound Zn2+ ions was confirmed by X-ray fluorescence and by an absorption-edge scan. X-ray diffraction data were collected from the orthorhombic (resolution of 5.2 Å) and rhombohedral (best resolution of 3.2 Å) crystal forms. SAD, MAD and MR methods were applied for solution of the phase problem, with partial success. TBN1 contains three Zn2+ ions in a similar spatial arrangement to that observed in nuclease P1 from Penicillium citrinum.


Assuntos
Desoxirribonucleases/química , Proteínas de Plantas/química , Proteínas Recombinantes/química , Solanum lycopersicum/química , Animais , Cristalização , Cristalografia por Raios X , Desoxirribonucleases/genética , Íons/química , Solanum lycopersicum/genética , Dados de Sequência Molecular , Proteínas de Plantas/genética , Conformação Proteica , Proteínas Recombinantes/genética , Zinco/química
16.
J Synchrotron Radiat ; 18(1): 29-30, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21169686

RESUMO

Anticancer drugs attacking nucleic acids of the target cells have so far been based on animal or fungal ribonucleases. Plant nucleases have been proved to exhibit decreased cytotoxic side effects. Tomato bifunctional nuclease 1 with activity against both single-stranded and double-stranded RNA and DNA was produced in tobacco leaves as recombinant protein. The enzyme crystallizes under several different crystallization conditions. The presence of Zn(2+) ions was confirmed by X-ray fluorescence. First crystallographic data were obtained.


Assuntos
Endodesoxirribonucleases/química , Endorribonucleases/química , Solanum lycopersicum/enzimologia , DNA de Cadeia Simples/metabolismo , RNA de Cadeia Dupla/metabolismo , Proteínas Recombinantes/química , Nicotiana/enzimologia , Difração de Raios X , Zinco/análise
17.
Recent Pat DNA Gene Seq ; 4(1): 29-39, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20218957

RESUMO

The antiproliferative and antitumor effect of leaf ribonuclease was tested in vitro on the human ML-2 tumor cell line and in vivo on athymic nude mice bearing human melanoma tumors. The antiproliferative activity of this plant ribonuclease in vitro studies was negligible. In the experiments in vivo a significant decrease of the tumor size, however was observed. From nucleases the mung bean nuclease (PhA) was studied first from nucleases. The antitumor effect of this enzyme on ML2 human tumor cell line was almost non-effective. However, significant antitumor activity was detected on human melanoma tumors in vivo. The antitumor effect of black pine pollen nuclease (PN) tested in vitro was also negligible. On the other side, in the experiments in vivo a significant decrease of the human melanoma tumor size was observed too. Recombinant plant nucleases of tomato (TBN1) and hop (HBN1) (submitted to patenting under no. PV 2008-384;Z7585) were isolated to homogeneity and examined for their antitumor effects and cytotoxicity. Although antiproliferative effects of both recombinant nucleases were not significant on the ML-2 cell culture in vitro, the nucleases were strongly cytostatic in vivo after their administration intravenously as stabilized conjugates with polyethylene glycol (PEG). Recombinant both nucleases were as effective against human melanoma tumors as previously studied pine pollen (PN) and mung bean nucleases and their effects were reached at about ten times lower concentrations compared to the use of bovine seminal RNase (BS-RNase).


Assuntos
Endonucleases/farmacologia , Melanoma/tratamento farmacológico , Proteínas de Plantas/farmacologia , Ribonucleases/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Endonucleases/uso terapêutico , Humanos , Melanoma/patologia , Camundongos , Camundongos Nus , Proteínas de Plantas/uso terapêutico , Ribonucleases/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Agric Food Chem ; 58(2): 902-12, 2010 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-20028133

RESUMO

Hop (Humulus lupulus L.), the essential source of beer flavor is of interest from a medicinal perspective in view of its high content in health-beneficial terpenophenolics including prenylflavonoids. The dissection of biosynthetic pathway(s) of these compounds in lupulin glands, as well as its regulation by transcription factors (TFs), is important for efficient biotechnological manipulation of the hop metabolome. TFs of the bZIP class were preselected from the hop transcriptome using a cDNA-AFLP approach and cloned from a cDNA library based on glandular tissue-enriched hop cones. The cloned TFs HlbZIP1A and HlbZIP2 have predicted molecular masses of 27.4 and 34.2 kDa, respectively, and both are similar to the group A3 bZIP TFs according to the composition of characteristic domains. While HlbZIP1A is rather neutral (pI 6.42), HlbZIP2 is strongly basic (pI 8.51). A truncated variant of HlbZIP1 (HlbZIP1B), which is strongly basic but lacks the leucine zipper domain, has also been cloned from hop. Similar to the previously cloned HlMyb3 from hop, both bZIP TFs show a highly specific expression in lupulin glands, although low expression was observed also in other tissues including roots and immature pollen. Comparative functional analyses of HlbZip1A, HlbZip2, and subvariants of HlMyb3 were performed in a transient expression system using Nicotiana benthamiana leaf coinfiltration with Agrobacterium tumefaciens strains bearing hop TFs and selected promoters fused to the GUS reference gene. Both hop bZIP TFs and HlMyb3 mainly activated the promoters of chalcone synthase chs_H1 and the newly cloned O-methyl transferase 1 genes, while the response of the valerophenone synthase promoter to the cloned hop TFs was very low. These analyses also showed that the cloned bZIP TFs are not strictly G-box-specific. HPLC analysis of secondary metabolites in infiltrated Petunia hybrida showed that both hop bZIP TFs interfere with the accumulation and the composition of flavonol glycosides, phenolic acids, and anthocyanins, suggesting the possibility of coregulating flavonoid biosynthetic pathways in hop glandular tissue.


Assuntos
Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Humulus/genética , Metaboloma , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Humulus/química , Humulus/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
19.
Virus Res ; 146(1-2): 81-8, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19748533

RESUMO

Triple gene block (TGB) sequences derived from isolates of ordinary Potato virus S (PVS-O) and Chenopodium-systemic (PVS-CS) were analyzed. Although the TGB sequences did not reveal any specific difference within the 7K protein, some specific differences within the 25K and 12K ORFs were found. In order to investigate a possible functional divergence of PVS-O and PVS-CS TGB variants, these genes were propagated in chimeric Potato virus X (PVX). Both PVS TGB variants partly complemented PVX TGB in Nicotiana benthamiana. The recombinant viruses multiplied to lower titer than the wild-type PVX in N. benthamiana showed attenuated symptoms. Whereas the recombinant PVX variants were also propagated systemically in Nicotiana glutinosa, Celosia argentea, Nicotiana occidentalis and chimeric PVX bearing TGB from PVS-O in Solanum lycopersicum, neither were propagated systemically in Chenopodium quinoa nor in Nicotiana tabacum cv. Samsun nn and the PVX-resistant Solanum tuberosum cv. Szignal. The potential for recombinant viruses to be transmitted by the aphid Myzus persicae was investigated. Aphid transmission in the recombinant virus was obtained by replacing PVX TGB by TGB from the PVS-CS isolate. These results show the potential function of Carlavirus TGB in aphid transmissibility and underlines the possible biological risks from certain recombinant virus variants.


Assuntos
Afídeos/virologia , Carlavirus/patogenicidade , Doenças das Plantas/virologia , Proteínas Virais/fisiologia , Fatores de Virulência/fisiologia , Sequência de Aminoácidos , Animais , Carlavirus/genética , Celosia/virologia , Chenopodium quinoa/virologia , Análise por Conglomerados , Teste de Complementação Genética , Solanum lycopersicum/virologia , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Nicotiana/virologia , Proteínas Virais/genética , Virulência , Fatores de Virulência/genética
20.
Oncol Res ; 18(4): 163-71, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20112502

RESUMO

Recombinant plant nucleases R-TBN1 and R-HBN1 were isolated to homogeneity and examined for their antitumor effects and cytotoxicity. Although antiproliferative effects of both recombinant nucleases were not significant on the ML-2 cell culture in vitro, the nucleases were strongly cytostatic in vivo after their administration intravenously as stabilized conjugates with polyethylene glycol (PEG). Recombinant nucleases were as effective against melanoma tumors as previously studied pine pollen (PN) and mung bean nucleases and their effects were reached at about 10 times lower concentrations compared to the use of bovine seminal RNase (BS-RNase). Because the recombinant nucleases R-HBN1 and R-TBN1 share only 67.4% amino acid identity and showed only partial immunochemical cross-reactivity, their similar anticancerogenic effects can be mainly explained by their catalytical similarity. Both recombinant nucleases showed lower degree of aspermatogenesis compared to BS-RNAse and PN nuclease. Unlike BS-RNase, aspermatogenesis induced by both recombinant nucleases could not be prevented by the homologous antibody complexes. Owing to relatively low cytotoxicity on the one hand, and high efficiency at low protein levels on the other, recombinant plant nucleases R-HBN1 and R-TBN1 appear to be stable biochemical agents that can be targeted as potential antitumor cytostatics.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células , Endonucleases/farmacologia , Melanoma/prevenção & controle , Proteínas Recombinantes/farmacologia , Espermatogênese , Animais , Bovinos , Endonucleases/genética , Glicosilação , Humanos , Humulus/enzimologia , Leucemia Mieloide/enzimologia , Leucemia Mieloide/patologia , Leucemia Mieloide/prevenção & controle , Solanum lycopersicum/enzimologia , Masculino , Melanoma/enzimologia , Melanoma/patologia , Camundongos , Camundongos Nus , Proteínas Recombinantes/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA