Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39291596

RESUMO

Self-assembled peptides provide a modular and diverse platform for drug delivery, and innovative delivery methods are needed for delivery of hydrogen sulfide (H2S), an endogenous signaling molecule (gasotransmitter) with significant therapeutic potential. Of the available types of H2S donors, peptide/protein H2S donor conjugates (PHDCs) offer significant versatility. Here we discuss the design, synthesis, and in-depth study of a PHDC containing three covalently linked components: a thiol-triggered H2S donor based on an S-aroylthiooxime (SATO), a GFFF tetrapeptide, and a tetraethylene glycol (TEG) dendron. Conventional transmission electron microscopy showed that the PHDC self-assembled into spherical structures without heat or stirring, but it formed nanofibers with gentle heat (37 °C) and stirring. Circular dichroism (CD) spectroscopy data collected during self-assembly under nanofiber-forming conditions suggested an increase in ß-sheet character and a decrease in organization of the SATO units. Release of H2S from the nanofibers was studied through triggering with various thiols. The release rate and total amount of H2S released over both short (5 h) and long (7 d) time scales varied with the charge state: negatively charged and zwitterionic thiols (e.g., Ac-Cys-OH and H-Cys-OH) triggered release slowly while a neutral thiol (Ac-Cys-OMe) showed ∼10-fold faster release, and a positively charged thiol (H-Cys-OMe) triggered H2S release nearly 50-fold faster than the negatively charged thiols. CD spectroscopy studies monitoring changes in secondary structure over time during H2S release showed similar trends. This study sheds light on the driving forces behind self-assembling nanostructures and offers insights into tuning H2S release through thiol charge state modulation.

2.
Nitric Oxide ; 151: 17-30, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39179197

RESUMO

The gasotransmitters nitric oxide (NO) and hydrogen sulfide (H2S) play important roles not only in maintaining physiological functions, but also in pathological conditions and events. Importantly, these molecules show a complex interplay in cancer biology, demonstrating both tumor-promoting and anti-tumor activities depending on their concentration, flux, and the environmental redox state. Additionally, various cell types respond differently to NO and H2S. These gasotransmitters can be synergistically combined with traditional anticancer treatments such as radiotherapy, immunotherapy, chemotherapy, and phototherapy. Notably, NO, and more recently H2S, have been shown to reverse multidrug resistance. Nanomaterials to deliver NO donors and, to a lesser extent, H2S donors, have emerged as a promising approach for targeted delivery of these gasotransmitters. Nanotechnology has advanced the delivery of anticancer drugs, enhancing efficiency and reducing side effects on non-cancerous cells. This review highlights recent progress in the design of NO and H2S-releasing nanomaterials for anticancer effects. It also explores the interactions between NO and H2S, which are crucial for developing combined therapies and nanomedicines with minimal side effects.


Assuntos
Antineoplásicos , Sulfeto de Hidrogênio , Nanoestruturas , Neoplasias , Óxido Nítrico , Transdução de Sinais , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/química , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Óxido Nítrico/metabolismo , Nanoestruturas/química , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química
3.
Nat Commun ; 14(1): 3635, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336876

RESUMO

Cryptic sites are short signaling peptides buried within the native extracellular matrix (ECM). Enzymatic cleavage of an ECM protein reveals these hidden peptide sequences, which interact with surface receptors to control cell behavior. Materials that mimic this dynamic interplay between cells and their surroundings via cryptic sites could enable application of this endogenous signaling phenomenon in synthetic ECM hydrogels. We demonstrate that depsipeptides ("switch peptides") can undergo enzyme-triggered changes in their primary sequence, with proof-of-principle studies showing how trypsin-triggered primary sequence rearrangement forms the bioadhesive pentapeptide YIGSR. We then engineered cryptic site-mimetic synthetic ECM hydrogels that experienced a cell-initiated gain of bioactivity. Responding to the endothelial cell surface enzyme aminopeptidase N, the inert matrix transformed into an adhesive synthetic ECM capable of supporting endothelial cell growth. This modular system enables dynamic reciprocity in synthetic ECMs, reproducing the natural symbiosis between cells and their matrix through inclusion of tunable hidden signals.


Assuntos
Matriz Extracelular , Peptídeos , Matriz Extracelular/metabolismo , Peptídeos/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Células Endoteliais , Hidrogéis/metabolismo
4.
Angew Chem Int Ed Engl ; 62(26): e202303755, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37194941

RESUMO

We report three constitutionally isomeric tetrapeptides, each comprising one glutamic acid (E) residue, one histidine (H) residue, and two lysine (KS ) residues functionalized with side-chain hydrophobic S-aroylthiooxime (SATO) groups. Depending on the order of amino acids, these amphiphilic peptides self-assembled in aqueous solution into different nanostructures:nanoribbons, a mixture of nanotoroids and nanoribbons, or nanocoils. Each nanostructure catalyzed hydrolysis of a model substrate, with the nanocoils exhibiting the greatest rate enhancement and the highest enzymatic efficiency. Coarse-grained molecular dynamics simulations, analyzed with unsupervised machine learning, revealed clusters of H residues in hydrophobic pockets along the outer edge of the nanocoils, providing insight for the observed catalytic rate enhancement. Finally, all three supramolecular nanostructures catalyzed hydrolysis of the l-substrate only when a pair of enantiomeric Boc-l/d-Phe-ONp substrates were tested. This study highlights how subtle molecular-level changes can influence supramolecular nanostructures, and ultimately affect catalytic efficiency.


Assuntos
Nanoestruturas , Nanotubos de Carbono , Peptídeos/química , Nanoestruturas/química , Isomerismo , Catálise
5.
Angew Chem Int Ed Engl ; 62(22): e202302303, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37078735

RESUMO

Inducing high levels of reactive oxygen species (ROS) inside tumor cells is a cancer therapy method termed chemodynamic therapy (CDT). Relying on delivery of Fenton reaction promoters such as Fe2+ , CDT takes advantage of overproduced ROS in the tumor microenvironment. We developed a peptide-H2 S donor conjugate, complexed with Fe2+ , termed AAN-PTC-Fe2+ . The AAN tripeptide was specifically cleaved by legumain, an enzyme overexpressed in glioma cells, to release carbonyl sulfide (COS). Hydrolysis of COS by carbonic anhydrase formed H2 S, an inhibitor of catalase, an enzyme that detoxifies H2 O2 . Fe2+ and H2 S together increased intracellular ROS levels and decreased viability in C6 glioma cells compared with controls lacking either Fe2+ , the AAN sequence, or the ability to generate H2 S. AAN-PTC-Fe2+ performed better than temezolimide while exhibiting no cytotoxicity toward H9C2 cardiomyocytes. This study provides an H2 S-amplified, enzyme-responsive platform for synergistic cancer treatment.


Assuntos
Glioma , Nanopartículas , Neoplasias , Humanos , Espécies Reativas de Oxigênio , Peptídeos/farmacologia , Linhagem Celular Tumoral , Microambiente Tumoral , Peróxido de Hidrogênio
6.
J Biol Chem ; 298(10): 102402, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988644

RESUMO

Hydrogen sulfide (H2S) is produced endogenously by several enzymatic pathways and modulates physiological functions in mammals. Quantification of H2S in biochemical systems remains challenging because of the presence of interferents with similar reactivity, particularly thiols. Herein, we present a new quantification method based on the formation of pyrene excimers in solution. We synthesized the probe 2-(maleimido)ethyl 4-pyrenylbutanoate (MEPB) and determined that MEPB reacted with H2S in a two-step reaction to yield the thioether-linked dimer (MEPB)2S, which formed excimers upon excitation, with a broad peak of fluorescence emission centered at 480 nm. In contrast, we found that the products formed with thiols showed peaks at 378 and 398 nm. The difference in emission between the products prevented the interference. Furthermore, we showed that the excimer fluorescence signal yielded a linear response to H2S, with a limit of detection of 54 nM in a fluorometer. Our quantification method with MEPB was successfully applied to follow the reaction of H2S with glutathione disulfide and to quantify the production of H2S from cysteine by Escherichia coli. In conclusion, this method represents an addition to the toolkit of biochemists to quantify H2S specifically and sensitively in biochemical systems.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Pirenos , Cisteína , Corantes Fluorescentes/química , Sulfeto de Hidrogênio/análise , Sulfeto de Hidrogênio/química , Pirenos/química , Compostos de Sulfidrila/química , Fluorescência
7.
ACS Appl Bio Mater ; 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505454

RESUMO

Stimuli-responsive peptide-based biomaterials are increasingly gaining interest for various specific and targeted treatments, including drug delivery and tissue engineering. Among all stimuli, pH can be especially useful because endogenous pH changes are often associated with abnormal microenvironments. pH-Responsive amino acids and organic linkers can be easily incorporated into peptides that self-assemble into various nanostructures. Thus, these largely biocompatible and easily tunable platforms are ideal candidates for drug release and as fibrous materials capable of mimicking the native extracellular matrix. In this review, we highlight common design motifs and mechanisms of pH-responsiveness in self-assembling peptide-based biomaterials, focusing on recent advances of these biomaterials applied in drug delivery and tissue engineering. Finally, we suggest future challenges and areas for potential development in pH-responsive self-assembling peptide-based biomaterials.

8.
Chem Commun (Camb) ; 58(34): 5225-5228, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35380568

RESUMO

Herein, the synthetic methods for preparation of a novel light-responsive metal-organic framework (MOF) UiO-AZB-F are outlined. Upon irradiation with green light, the framework demonstrates controlled release of chemotherapeutic drug cargo with simultaneous breakdown into low toxicity small molecule components.


Assuntos
Neoplasias Colorretais , Estruturas Metalorgânicas , Neoplasias Colorretais/tratamento farmacológico , Portadores de Fármacos , Humanos
9.
ACS Chem Biol ; 16(7): 1128-1141, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34114796

RESUMO

Hydrogen sulfide (H2S) has gained significant attention as a potent bioregulator in the redox metabolome, but it is just one of many reactive sulfur species (RSS). Recently, small molecule persulfides (structure RSSH) have emerged as RSS of particular interest due to their enhanced antioxidant abilities compared to H2S and their ability to directly convert protein thiols into protein persulfides, suggesting that persulfides may have distinct physiological functions from H2S. However, persulfides exhibit instability and cross-reactivity that hampers the elucidation of their precise biological roles. As such, chemists have designed chemical tools and techniques to facilitate the study of persulfides under various conditions. These molecules and methods include persulfide trapping reagents and sensors, as well as compounds that degrade in response to various triggers to release persulfides, termed persulfide donors. There now exist a variety of persulfide donor classes, some of which possess tissue-targeting capabilities designed to mimic localized endogenous production of RSS. This Review briefly covers the physicochemical properties of persulfides, the endogenous production of small molecule persulfides, and their reactions with protein thiols and other reactive species. These introductory sections are followed by a discussion of chemical tools used in persulfide chemical biology, with critical analysis of recent advancements in the field and commentary on potential directions for future research.


Assuntos
Sulfetos/análise , Sulfetos/farmacologia , Animais , Linhagem Celular Tumoral , Técnicas de Química Analítica , Dissulfetos/química , Dissulfetos/metabolismo , Dissulfetos/efeitos da radiação , Humanos , Indicadores e Reagentes/química , Luz , Oxirredução , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacologia , Pró-Fármacos/efeitos da radiação , Sulfetos/química , Sulfetos/metabolismo
10.
Chem Commun (Camb) ; 57(45): 5522-5525, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-33956024

RESUMO

A library of N-thiocarboxyanhydrides (NTAs) derived from natural amino acids with benign byproducts and controlled H2S-release kinetics is reported. Minimal acute in vitro toxicity was observed in multiple cell lines, while longer-term toxicity in cancer cells was observed, with slow-releasing donors exhibiting the greatest cytotoxic effects.


Assuntos
Aminoácidos/química , Anidridos/química , Antineoplásicos/química , Sulfeto de Hidrogênio/química , Bibliotecas de Moléculas Pequenas/química , Anidridos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Técnicas Eletroquímicas , Células HT29 , Humanos , Cinética , Células MCF-7 , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
11.
Angew Chem Int Ed Engl ; 60(11): 6061-6067, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33511734

RESUMO

Persulfides (R-SSH) have been hypothesized as potent redox modulators and signaling compounds. Reported herein is the synthesis, characterization, and in vivo evaluation of a persulfide donor that releases N-acetyl cysteine persulfide (NAC-SSH) in response to the prokaryote-specific enzyme nitroreductase. The donor, termed NDP-NAC, decomposed in response to E. coli nitroreductase, resulting in release of NAC-SSH. NDP-NAC elicited gastroprotective effects in mice that were not observed in animals treated with control compounds incapable of persulfide release or in animals treated with Na2 S. NDP-NAC induced these effects by the upregulation of beneficial small- and medium-chain fatty acids and through increasing growth of Turicibacter sanguinis, a beneficial gut bacterium. It also decreased the populations of Synergistales bacteria, opportunistic pathogens implicated in gastrointestinal infections. This study reveals the possibility of maintaining gut health or treating microbiome-related diseases by the targeted delivery of reactive sulfur species.


Assuntos
Antibacterianos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Pró-Fármacos/farmacologia , Sulfetos/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Desenho de Fármacos , Escherichia coli/efeitos dos fármacos , Cinética , Listeria monocytogenes/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/química , Staphylococcus aureus/efeitos dos fármacos , Sulfetos/síntese química , Sulfetos/química
12.
ACS Macro Lett ; 9(4): 606-612, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33194315

RESUMO

Related biologically to the known gasotransmitter hydrogen sulfide (H2S), persulfides (R-SSH) have recently been recognized as native signaling compounds and redox regulators in their own right. Reported here is the synthesis, characterization, and in vitro evaluation of a small molecule persulfide donor and its polymeric counterpart, both of which release N-acetyl cysteine persulfide (NAC-SSH) in response to esterases. The donors, termed EDP-NAC and poly(EDP-NAC), underwent controlled decomposition in response to porcine liver esterase, resulting in pseudo-first-order release half-lives of 1.6 h ± 0.3 h and 36.0 h ± 0.6 h, respectively. In cell experiments, slow-releasing poly(EDP-NAC) rescued H9C2 cardiomyocytes more effectively than EDP-NAC when cells were treated with 5-fluorouricil (5-FU), which induces sustained production of ROS. Neither EDP-NAC nor poly(EDP-NAC) rescued MCF-7 breast cancer cells from 5-FU-induced oxidative stress, suggesting that polymeric persulfide donors could be used as adjuvants to reduce the deleterious cardiotoxic effects of many chemotherapeutics.

13.
J Am Chem Soc ; 142(47): 20058-20065, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33186019

RESUMO

Self-assembly of amphiphilic peptide-based building blocks gives rise to a plethora of interesting nanostructures such as ribbons, fibers, and tubes. However, it remains a great challenge to employ peptide self-assembly to directly produce nanostructures with lower symmetry than these highly symmetric motifs. We report here our discovery that persistent and regular crescent nanostructures with a diameter of 28 ± 3 nm formed from a series of tetrapeptides with the general structure AdKSKSEX (Ad = adamantyl group, KS = lysine residue functionalized with an S-aroylthiooxime (SATO) group, E = glutamic acid residue, and X = variable amino acid residue). In the presence of cysteine, the biological signaling gas hydrogen sulfide (H2S) was released from the SATO units of the crescent nanostructures, termed peptide-H2S donor conjugates (PHDCs), reducing levels of reactive oxygen species (ROS) in macrophage cells. Additional in vitro studies showed that the crescent nanostructures alleviated cytotoxicity induced by phorbol 12-myristate-13-acetate more effectively than common H2S donors and a PHDC of a similar chemical structure, AdKSKSE, that formed short nanoworms instead of nanocrescents. Cell internalization studies indicated that nanocrescent-forming PHDCs were more effective in reducing ROS levels in macrophages because they entered into and remained in cells better than nanoworms, highlighting how nanostructure morphology can affect bioactivity in drug delivery.


Assuntos
Nanoestruturas/química , Oligopeptídeos/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Oligopeptídeos/farmacologia , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
14.
Eur Polym J ; 1412020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33162563

RESUMO

Polymer micelles, used extensively as vehicles in the delivery of active pharmaceutical ingredients, represent a versatile polymer architecture in drug delivery systems. We hypothesized that degree of crosslinking in the hydrophobic core of amphiphilic block copolymer micelles could be used to tune the rate of release of the biological signaling gas (gasotransmitter) hydrogen sulfide (H2S), a potential therapeutic. To test this hypothesis, we first synthesized amphiphilic block copolymers of the structure PEG-b-P(FBEA) (PEG = poly(ethylene glycol), FBEA = 2-(4-formylbenzoyloxy)ethyl acrylate). Using a modified arm-first approach, we then varied the crosslinking percentage in the core-forming block via addition of a 'O,O'-alkanediyl bis(hydroxylamine) crosslinking agent. We followed incorporation of the crosslinker by 1H NMR spectroscopy, monitoring the appearance of the oxime signal resulting from reaction of pendant aryl aldehydes on the block copolymer with hydroxylamines on the crosslinker, which revealed crosslinking percentages of 5, 10, and 15%. We then installed H2S-releasing S-aroylthiooxime (SATO) groups on the crosslinked polymers, yielding micelles with SATO units in their hydrophobic cores after self-assembly in water. H2S release studies in water, using cysteine (Cys) as a trigger to induce H2S release from the SATO groups in the micelle core, revealed increasing half-lives of H2S release, from 117 ± 6 min to 210 ± 30 min, with increasing crosslinking density in the micelle core. This result was consistent with our hypothesis, and we speculate that core crosslinking limits the rate of Cys diffusion into the micelle core, decreasing the release rate. This method for tuning the release of covalently linked small molecules through modulation of micelle core crosslinking density may extend beyond H2S to other drug delivery systems where precise control of release rate is needed.

15.
Biomacromolecules ; 21(8): 3279-3286, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32702239

RESUMO

Despite the widespread use of hydrogels in biomedical applications, little is known regarding the effect of crosslinker topology on hydrogel degradation. Dendritic and linear elastin-like peptides (ELPs) were used as crosslinkers for hyaluronic acid (HA) hydrogels, and their enzymatic degradation was studied using trypsin. Rheological studies revealed that hydrogels crosslinked with ELP dendrimers (HA_denELPs) degraded more slowly than those crosslinked with the otherwise equivalent linear ELPs (i.e., both molecules have the same number of pentamers and peripheral lysine residues). The origin of this phenomenon was evaluated using solution studies in which various dendritic and linear ELPs were treated with trypsin. Apart from the expected steric hindrances due to the dendritic topology, we identified the dual directionality of the peptide sequences (generated by a central branching lysine residue) and the likelihood of cleaving a productive crosslinking point as two additional contributors to the lesser degradability of HA_denELPs. Overall, these results highlight how the molecular design of crosslinker topology represents a novel strategy to tune the degradation rate of hydrogels.


Assuntos
Ácido Hialurônico , Hidrogéis , Sequência de Aminoácidos , Elastina , Peptídeos
16.
Angew Chem Int Ed Engl ; 59(38): 16698-16704, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32592216

RESUMO

Overproduction of superoxide anion (O2.- ), the primary cellular reactive oxygen species (ROS), is implicated in various human diseases. To reduce cellular oxidative stress caused by overproduction of superoxide, we developed a compound that reacts with O2.- to release a persulfide (RSSH), a type of reactive sulfur species related to the gasotransmitter hydrogen sulfide (H2 S). Termed SOPD-NAC, this persulfide donor reacts specifically with O2.- , decomposing to generate N-acetyl cysteine (NAC) persulfide. To enhance persulfide delivery to cells, we conjugated the SOPD motif to a short, self-assembling peptide (Bz-CFFE-NH2 ) to make a superoxide-responsive, persulfide-donating peptide (SOPD-Pep). Both SOPD-NAC and SOPD-Pep delivered persulfides/H2 S to H9C2 cardiomyocytes and lowered ROS levels as confirmed by quantitative in vitro fluorescence imaging studies. Additional in vitro studies on RAW 264.7 macrophages showed that SOPD-Pep mitigated toxicity induced by phorbol 12-myristate 13-acetate (PMA) more effectively than SOPD-NAC and several control compounds, including common H2 S donors.


Assuntos
Pró-Fármacos/farmacologia , Sulfetos/farmacologia , Superóxidos/antagonistas & inibidores , Animais , Linhagem Celular , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/farmacologia , Camundongos , Estrutura Molecular , Imagem Óptica , Estresse Oxidativo/efeitos dos fármacos , Pró-Fármacos/síntese química , Pró-Fármacos/química , Células RAW 264.7 , Ratos , Sulfetos/síntese química , Sulfetos/química , Superóxidos/metabolismo
17.
J Am Chem Soc ; 142(20): 9158-9162, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32392041

RESUMO

The plasmonic properties of silver nanoparticle (AgNP) arrays are directly controlled by AgNP size, shape, and spatial arrangement. Reported here is a strategy to prepare chiral AgNP arrays templated by two constitutionally isomeric aromatic peptide amphiphiles (APAs), KSC'EKS and C'EKSKS (KS = S-aroylthiooxime-modified lysine, C' = citrulline, and E = glutamic acid). In phosphate buffer, both APAs initially self-assembled into nanoribbons with a similar geometry. However, in the presence of silver ions and poly(sodium 4-styrenesulfonate) (PSSS), one of the nanoribbons (KSC'EKS) turned into nanohelices with a regular twisting pitch, while the other (C'EKSKS) remained as nanoribbons. Both were used as templates for synthesis of arrays of ∼8 nm AgNPs to understand how small changes in molecular structure affect the plasmonic properties of these chiral AgNP/APA hybrids. Both hybrids showed improved colloidal stability compared to pure AgNPs, and both showed enhanced sensitivity as surface-enhanced Raman spectroscopy (SERS) substrates for model analytes, with nanohelices showing better SERS performance compared to their nanoribbon counterparts and pure AgNPs.


Assuntos
Nanopartículas Metálicas/química , Peptídeos/síntese química , Prata/química , Estrutura Molecular , Tamanho da Partícula , Peptídeos/química , Propriedades de Superfície
18.
Biochem Pharmacol ; 176: 113931, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32224139

RESUMO

Nitric oxide (NO) and hydrogen sulfide (H2S) are industrial toxins or pollutants; however, both are produced endogenously and have important biological roles in most mammalian tissues. The recognition that these gasotransmitters have a role in physiological and pathophysiological processes has presented opportunities to harness their intracellular effects either through inhibition of their production; or more commonly, through inducing their levels and or delivering them by various modalities. In this review article, we have focused on an array of NO and H2S donors, their hybrids with other established classes of drugs, and the various engineered delivery platforms such a fibers, polymers, nanoparticles, hydrogels, and others. In each case, we have reviewed the rationale for their development.


Assuntos
Gasotransmissores/metabolismo , Sulfeto de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais , Animais , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Cisteína/metabolismo , Humanos , Óxido Nítrico Sintase/metabolismo
19.
Biomacromolecules ; 21(3): 1171-1178, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32053359

RESUMO

Controlled release is an essential requirement for delivery of hydrogen sulfide (H2S) because of its reactive nature, short half-life in biological fluids, and toxicity at high concentrations. In this context, H2S delivery via hydrogels may be beneficial as they can deliver H2S locally at the site of interest. Herein, we employed hydrogels based on aromatic peptide amphiphiles (APAs) with tunable mechanical properties to modulate the rates of H2S release. The APAs contained an aromatic S-aroylthiooxime (SATO) H2S donor attached with a linker to a short IAVEEE hexapeptide. Linker units included carbonyl, substituted O-methylenes, alkenyl, and alkyl segments with the goal of evaluating the role of linker structure on self-assembly, capacity for hydrogelation, and H2S release rate. We studied each peptide by transmission electron microscopy, circular dichroism spectroscopy, and rheology, and we measured H2S release rates from each gel, triggering SATO decomposition and release of H2S by addition of cysteine (Cys). Using an H2S-selective electrode probe as well as a turn-on fluorescent H2S probe in the presence of H9C2 cardiomyocytes, we found that the rate of H2S release from the hydrogels depended on the rate of Cys penetration into the nanofiber core with stiffer gels showing longer overall release.


Assuntos
Sulfeto de Hidrogênio , Nanofibras , Meia-Vida , Hidrogéis , Peptídeos
20.
J Clin Invest ; 130(2): 1024-1035, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31689239

RESUMO

Leptomeningeal anastomoses or pial collateral vessels play a critical role in cerebral blood flow (CBF) restoration following ischemic stroke. The magnitude of this adaptive response is postulated to be controlled by the endothelium, although the underlying molecular mechanisms remain under investigation. Here we demonstrated that endothelial genetic deletion, using EphA4fl/fl/Tie2-Cre and EphA4fl/fl/VeCahderin-CreERT2 mice and vessel painting strategies, implicated EphA4 receptor tyrosine kinase as a major suppressor of pial collateral remodeling, CBF, and functional recovery following permanent middle cerebral artery occlusion. Pial collateral remodeling is limited by the crosstalk between EphA4-Tie2 signaling in vascular endothelial cells, which is mediated through p-Akt regulation. Furthermore, peptide inhibition of EphA4 resulted in acceleration of the pial arteriogenic response. Our findings demonstrate that EphA4 is a negative regulator of Tie2 receptor signaling, which limits pial collateral arteriogenesis following cerebrovascular occlusion. Therapeutic targeting of EphA4 and/or Tie2 represents an attractive new strategy for improving collateral function, neural tissue health, and functional recovery following ischemic stroke.


Assuntos
Isquemia Encefálica/metabolismo , Receptor EphA4/metabolismo , Receptor TIE-2/metabolismo , Transdução de Sinais , Acidente Vascular Cerebral/metabolismo , Remodelação Vascular , Animais , Isquemia Encefálica/genética , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor EphA4/genética , Receptor TIE-2/genética , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA