Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JBMR Plus ; 8(6): ziae050, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38699440

RESUMO

Cherubism (OMIM 118400) is a rare craniofacial disorder in children characterized by destructive jawbone expansion due to the growth of inflammatory fibrous lesions. Our previous studies have shown that gain-of-function mutations in SH3 domain-binding protein 2 (SH3BP2) are responsible for cherubism and that a knock-in mouse model for cherubism recapitulates the features of cherubism, such as increased osteoclast formation and jawbone destruction. To date, SH3BP2 is the only gene identified to be responsible for cherubism. Since not all patients clinically diagnosed with cherubism had mutations in SH3BP2, we hypothesized that there may be novel cherubism genes and that these genes may play a role in jawbone homeostasis. Here, using whole exome sequencing, we identified homozygous loss-of-function variants in the opioid growth factor receptor like 1 (OGFRL1) gene in 2 independent autosomal recessive cherubism families from Syria and India. The newly identified pathogenic homozygous variants were not reported in any variant databases, suggesting that OGFRL1 is a novel gene responsible for cherubism. Single cell analysis of mouse jawbone tissue revealed that Ogfrl1 is highly expressed in myeloid lineage cells. We generated OGFRL1 knockout mice and mice carrying the Syrian frameshift mutation to understand the in vivo role of OGFRL1. However, neither mouse model recapitulated human cherubism or the phenotypes exhibited by SH3BP2 cherubism mice under physiological and periodontitis conditions. Unlike bone marrow-derived M-CSF-dependent macrophages (BMMs) carrying the SH3BP2 cherubism mutation, BMMs lacking OGFRL1 or carrying the Syrian mutation showed no difference in TNF-ɑ mRNA induction by LPS or TNF-ɑ compared to WT BMMs. Osteoclast formation induced by RANKL was also comparable. These results suggest that the loss-of-function effects of OGFRL1 in humans differ from those in mice and highlight the fact that mice are not always an ideal model for studying rare craniofacial bone disorders.

2.
Oral Dis ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656694

RESUMO

OBJECTIVE: To investigate the production of leucine-rich α-2-glycoprotein-1 (LRG1) in periodontitis patients and its effectiveness as a new diagnostic marker for periodontitis. SUBJECTS AND METHODS: In vitro experiments were conducted to analyze LRG1 mRNA expression in human gingival epithelial cells and fibroblasts via quantitative real-time PCR. In vivo experiments were conducted to analyze LRG1 localization in periodontitis patients. The correlation between the serum LRG1 levels and alveolar bone resorption in the mouse periodontitis model was also investigated. RESULTS: A positive correlation existed between the periodontal inflamed surface area and serum LRG1 levels (Spearman's rank correlation coefficient: 0.60). LRG1 mRNA expression in human gingival epithelial cells and fibroblasts was upregulated by Porphyromonas gingivalis stimulation or tumor necrosis factor-α stimulation. Interleukin-6 in human gingival epithelial cells and fibroblasts induced the production of LRG1 and transforming growth factor-ß. LRG1 levels in the periodontal tissue and serum in the periodontitis model were higher than those in control mice. LRG1 local administration resulted in alveolar bone resorption, whereas the administration of interleukin-6R antibody inhibited bone resorption. CONCLUSIONS: LRG1 levels in serum and periodontal tissue are upregulated in periodontitis and are implicated in periodontal tissue destruction through interleukin-6 production.

3.
J Periodontal Res ; 59(4): 679-688, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527968

RESUMO

OBJECTIVE: This study aimed to investigate the factors influencing the clinical outcomes of regenerative therapy using recombinant human fibroblast growth factor-2 (rhFGF-2). BACKGROUND: rhFGF-2 promotes periodontal regeneration, and identifying the factors influencing this regeneration is important for optimizing the effectiveness of rhFGF-2. METHODS AND MATERIALS: This study used a hospital information-integrated database to identify patients who underwent periodontal regenerative therapy with rhFGF-2. Factors included age, smoking status, diabetes mellitus (DM), periodontal inflamed surface area (PISA) at the initial visit, whether the most posterior tooth was involved or not, and preoperative radiological bone defect angle. Periodontal regenerative therapy outcomes were defined as good if radiographic bone fill ≥35% or periodontal pocket closure at 9-15 months after surgery. Bone fill rate (%) and periodontal pocket depth (mm) were also used as outcome measures. Factors were evaluated by simple regression analysis, and then the association between factors and the outcomes was determined by multivariate analysis. RESULTS: PISA and age at the first visit did not significantly influence the success or failure of bone fill rate byrhFGF-2. However, DM, radiographic bone defect angle, and the most posterior tooth significantly influenced the regenerative effect (success/failure in bone fill) of rhFGF-2. The most posterior tooth was significantly associated with bone fill rate by rhFGF-2. Examination of the association between pocket closure and factors shows that the most posterior tooth significantly influenced. The most posterior tooth and preoperative PPD were significantly associated with pocket reduction depth. For the most posterior tooth, a significantly higher bone regeneration rate (p < .05) was observed with a combination of autologous bone graft and rhFGF-2 than with rhFGF-2 alone, and the effect was significant in multivariate analysis. CONCLUSIONS: The radiographic bone defect angle, the involvement of most posterior teeth, and the presence of DM influenced the effectiveness of rhFGF-2 in periodontal regeneration. However, PISA values and age at the initial visit had no significant effect.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Regeneração Tecidual Guiada Periodontal , Proteínas Recombinantes , Humanos , Masculino , Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Fator 2 de Crescimento de Fibroblastos/farmacologia , Pessoa de Meia-Idade , Feminino , Estudos de Casos e Controles , Regeneração Tecidual Guiada Periodontal/métodos , Proteínas Recombinantes/uso terapêutico , Proteínas Recombinantes/farmacologia , Resultado do Tratamento , Adulto , Idoso , Regeneração Óssea/efeitos dos fármacos , Perda do Osso Alveolar/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA