Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Arch Virol ; 169(3): 47, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366081

RESUMO

Bovine leukemia virus (BLV) is a member of the family Retroviridae that causes enzootic bovine leukemia (EBL). However, the association between BLV infection and EBL development remains unclear. In this study, we identified a BLV/SMAD3 chimeric provirus within CC2D2A intron 30 in monoclonal expanded malignant cells from a cow with EBL. The chimeric provirus harbored a spliced SMAD3 sequence composed of exons 3-9, encoding the short isoform protein, and the BLV-SMAD3 chimeric transcript was detectable in cattle with EBL. This is the first report of a BLV chimeric provirus that might be involved in EBL tumorigenesis.


Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Feminino , Bovinos , Provírus/genética , Vírus da Leucemia Bovina/genética
2.
Hepatol Commun ; 7(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051537

RESUMO

BACKGROUND: HBV DNA integration into the host genome is frequently found in HBV-associated HCC tissues and is associated with hepatocarcinogenesis. Multiple detection methods, including hybrid capture-sequencing, have identified integration sites and provided clinical implications; however, each has advantages and disadvantages concerning sensitivity, cost, and throughput. Therefore, methods that can comprehensively and cost-effectively detect integration sites with high sensitivity are required. Here, we investigated the efficiency of RAISING (Rapid Amplification of Integration Site without Interference by Genomic DNA contamination) as a simple and inexpensive method to detect viral integration by amplifying HBV-integrated fragments using virus-specific primers covering the entire HBV genome. METHODS AND RESULTS: Illumina sequencing of RAISING products from HCC-derived cell lines (PLC/PRF/5 and Hep3B cells) identified HBV-human junction sequences as well as their frequencies. The HBV-human junction profiles identified using RAISING were consistent with those determined using hybrid capture-sequencing, and the representative junctions could be validated by junction-specific nested PCR. The comparison of these detection methods revealed that RAISING-sequencing outperforms hybrid capture-sequencing in concentrating junction sequences. RAISING-sequencing was also demonstrated to determine the sites of de novo integration in HBV-infected HepG2-NTCP cells, primary human hepatocytes, liver-humanized mice, and clinical specimens. Furthermore, we made use of xenograft mice subcutaneously engrafted with PLC/PRF/5 or Hep3B cells, and HBV-human junctions determined by RAISING-sequencing were detectable in the plasma cell-free DNA using droplet digital PCR. CONCLUSIONS: RAISING successfully profiles HBV-human junction sequences with smaller amounts of sequencing data and at a lower cost than hybrid capture-sequencing. This method is expected to aid basic HBV integration and clinical diagnosis research.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Vírus da Hepatite B/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , DNA Viral/genética , Hepatócitos/metabolismo
3.
Microbiol Spectr ; 10(6): e0259522, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36227090

RESUMO

Bovine leukemia virus (BLV), a retrovirus, infects B cells of ruminants and is integrated into the host genome as a provirus for lifelong infection. After a long latent period, 1% to 5% of BLV-infected cattle develop aggressive lymphoma, enzootic bovine leukosis (EBL). Since the clonal expansion of BLV-infected cells is essential for the development of EBL, the clonality of proviral integration sites could be a molecular marker for diagnosis and early prediction of EBL. Recently, we developed Rapid Amplification of the Integration Site without Interference by Genomic DNA Contamination (RAISING) and an analysis software of clonality value (CLOVA) to analyze the clonality of transgene-integrated cells. RAISING-CLOVA is capable of assessing the risk of adult T-cell leukemia/lymphoma development in human T-cell leukemia virus-I-infected individuals through the clonality analysis of proviral integration sites. Thus, we herein examined the performance of RAISING-CLOVA for the clonality analysis of BLV-infected cells and conducted a comprehensive clonality analysis by RAISING-CLOVA in EBL and non-EBL cattle. RAISING-CLOVA targeting BLV was a highly accurate and reproducible method for measuring the clonality value. The comprehensive clonality analysis successfully distinguished EBL from non-EBL specimens with high sensitivity and specificity. A longitudinal clonality analysis in BLV-infected sheep, an experimental model of lymphoma, also confirmed the effectiveness of RAISING-CLOVA for early detection of EBL development. Therefore, our study emphasizes the usefulness of RAISING-CLOVA as a routine clinical test for monitoring virus-related cancers. IMPORTANCE Bovine leukemia virus (BLV) infection causes aggressive B-cell lymphoma in cattle and sheep. The virus has spread to farms around the world, causing significant economic damage to the livestock industry. Thus, the identification of high-risk asymptomatic cattle before they develop lymphoma can be effective in reducing the economic damage. Clonal expansion of BLV-infected cells is a promising marker for the development of lymphoma. Recently, we have developed a high-throughput method to amplify random integration sites of transgenes in host genomes and analyze their clonality, named as RAISING-CLOVA. As a new application of our technology, in this study, we demonstrate the value of the RAISING-CLOVA method for the diagnosis and early prediction of lymphoma development by BLV infection in cattle. RAISING-CLOVA is a reliable technology for monitoring the clonality of BLV-infected cells and would contribute to reduce the economic losses by EBL development.


Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Linfoma , Bovinos , Humanos , Animais , Ovinos , Vírus da Leucemia Bovina/genética , Leucose Enzoótica Bovina/diagnóstico , Provírus/genética , Integração Viral
4.
Commun Biol ; 5(1): 535, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654946

RESUMO

Both natural viral infections and therapeutic interventions using viral vectors pose significant risks of malignant transformation. Monitoring for clonal expansion of infected cells is important for detecting cancer. Here we developed a novel method of tracking clonality via the detection of transgene integration sites. RAISING (Rapid Amplification of Integration Sites without Interference by Genomic DNA contamination) is a sensitive, inexpensive alternative to established methods. Its compatibility with Sanger sequencing combined with our CLOVA (Clonality Value) software is critical for those without access to expensive high throughput sequencing. We analyzed samples from 688 individuals infected with the retrovirus HTLV-1, which causes adult T-cell leukemia/lymphoma (ATL) to model our method. We defined a clonality value identifying ATL patients with 100% sensitivity and 94.8% specificity, and our longitudinal analysis also demonstrates the usefulness of ATL risk assessment. Future studies will confirm the broad applicability of our technology, especially in the emerging gene therapy sector.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , Adulto , Sequenciamento de Nucleotídeos em Larga Escala , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Leucemia-Linfoma de Células T do Adulto/genética , Leucemia-Linfoma de Células T do Adulto/patologia , Leucemia-Linfoma de Células T do Adulto/terapia , Transgenes , Integração Viral/genética
5.
Int J Hematol ; 112(3): 300-306, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32725607

RESUMO

Approximately 10-20 million of Human T-cell leukemia virus type-1 (HTLV-1)-infected carriers have been previously reported, and approximately 5% of these carriers develop adult T-cell leukemia/lymphoma (ATL) with a characteristic poor prognosis. In Japan, Southern blotting has long been routinely performed for detection of clonally expanded ATL cells in vivo, and as a confirmatory diagnostic test for ATL. However, alternative methods to Southern blotting, such as sensitive, quantitative, and rapid analytical methods, are currently required in clinical practice. In this study, we developed a high-throughput method called rapid amplification of integration site (RAIS) that could amplify HTLV-1-integrated fragments within 4 h and detect the integration sites in > 0.16% of infected cells. Furthermore, we established a novel quantification method for HTLV-1 clonality using Sanger sequencing with RAIS products, and the validity of the quantification method was confirmed by comparing it with next-generation sequencing in terms of the clonality. Thus, we believe that RAIS has a high potential for use as an alternative routine molecular confirmatory test for the clonality analysis of HTLV-1-infected cells.


Assuntos
Células Clonais , Infecções por HTLV-I/diagnóstico , Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto/diagnóstico , Leucemia-Linfoma de Células T do Adulto/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA