Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(6): e2300644120, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38306481

RESUMO

It is unclear how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to the strong but ineffective inflammatory response that characterizes severe Coronavirus disease 2019 (COVID-19), with amplified immune activation in diverse cell types, including cells without angiotensin-converting enzyme 2 receptors necessary for infection. Proteolytic degradation of SARS-CoV-2 virions is a milestone in host viral clearance, but the impact of remnant viral peptide fragments from high viral loads is not known. Here, we examine the inflammatory capacity of fragmented viral components from the perspective of supramolecular self-organization in the infected host environment. Interestingly, a machine learning analysis to SARS-CoV-2 proteome reveals sequence motifs that mimic host antimicrobial peptides (xenoAMPs), especially highly cationic human cathelicidin LL-37 capable of augmenting inflammation. Such xenoAMPs are strongly enriched in SARS-CoV-2 relative to low-pathogenicity coronaviruses. Moreover, xenoAMPs from SARS-CoV-2 but not low-pathogenicity homologs assemble double-stranded RNA (dsRNA) into nanocrystalline complexes with lattice constants commensurate with the steric size of Toll-like receptor (TLR)-3 and therefore capable of multivalent binding. Such complexes amplify cytokine secretion in diverse uninfected cell types in culture (epithelial cells, endothelial cells, keratinocytes, monocytes, and macrophages), similar to cathelicidin's role in rheumatoid arthritis and lupus. The induced transcriptome matches well with the global gene expression pattern in COVID-19, despite using <0.3% of the viral proteome. Delivery of these complexes to uninfected mice boosts plasma interleukin-6 and CXCL1 levels as observed in COVID-19 patients.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , Células Endoteliais , Proteoma , Peptídeos
2.
J Biol Chem ; 299(6): 104765, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37121546

RESUMO

Influenza hemagglutinin (HA) is a prototypical class 1 viral entry glycoprotein, responsible for mediating receptor binding and membrane fusion. Structures of its prefusion and postfusion forms, embodying the beginning and endpoints of the fusion pathway, have been extensively characterized. Studies probing HA dynamics during fusion have begun to identify intermediate states along the pathway, enhancing our understanding of how HA becomes activated and traverses its conformational pathway to complete fusion. HA is also the most variable, rapidly evolving part of influenza virus, and it is not known whether mechanisms of its activation and fusion are conserved across divergent viral subtypes. Here, we apply hydrogen-deuterium exchange mass spectrometry to compare fusion activation in two subtypes of HA, H1 and H3. Our data reveal subtype-specific behavior in the regions of HA that undergo structural rearrangement during fusion, including the fusion peptide and HA1/HA2 interface. In the presence of an antibody that inhibits the conformational change (FI6v3), we observe that acid-induced dynamic changes near the epitope are dampened, but the degree of protection at the fusion peptide is different for the two subtypes investigated. These results thus provide new insights into variation in the mechanisms of influenza HA's dynamic activation and its inhibition.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza , Orthomyxoviridae , Humanos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Hemaglutininas , Concentração de Íons de Hidrogênio , Influenza Humana , Orthomyxoviridae/metabolismo , Peptídeos
3.
Transbound Emerg Dis ; 69(5): e2800-e2807, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35714126

RESUMO

Crane-associated adenovirus 1 (CrAdV-1) is a proposed novel virus in the genus Aviadenovirus, first detected in faecal samples from hooded cranes (a vulnerable crane species) on the Izumi plain, a major overwintering site for migratory cranes in Japan. CrAdV-1 was genetically characterized in that study; however, its virological characteristics remain largely unclear. To investigate the prevalence and organ tropism of CrAdV-1, we collected swab and organ samples from dead or debilitated cranes on the Izumi plain. CrAdV-1 gene was detected in 47% (45/95) of tested cranes, comprising mainly hooded cranes but also white-naped and sandhill cranes. These results indicate that CrAdV-1 shedding is widespread among cranes overwintering on the Izumi plain. Phylogenetic analyses revealed that the 68 nucleotide sequences determined from the positive swabs formed a single cluster, suggesting phylogenetic differences between CrAdV-1 and other aviadenoviruses. CrAdV-1 prevalence showed a significant linear increase with time through the overwintering period (November to February), especially among juveniles. These findings indicate that CrAdV-1 spreads mainly by transmission between juveniles progressively through the overwintering period. The CrAdV-1 gene-positive rate was significantly higher in cloacal swabs than conjunctival or tracheal swabs. Copy numbers for the partial CrAdV-1 gene sequence were markedly high in the colon samples from three of the four cranes investigated for organ tropism. We also detected relatively high copy numbers in the cerebrum, trachea, lung and heart, suggesting that CrAdV-1 mainly targets these four organs and transmitted via the faecal-oral route and airborne transmission. These results contribute to further understanding of the virological characteristics of CrAdV-1.


Assuntos
Aviadenovirus , Aves , Animais , Japão/epidemiologia , Filogenia , Prevalência , Tropismo
4.
J Biol Chem ; 298(3): 101610, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065072

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a genetic trait that can cause hemolytic anemia. To date, over 150 nonsynonymous mutations have been identified in G6PD, with pathogenic mutations clustering near the dimer and/or tetramer interface and the allosteric NADP+-binding site. Recently, our lab identified a small molecule that activates G6PD variants by stabilizing the allosteric NADP+ and dimer complex, suggesting therapeutics that target these regions may improve structural defects. Here, we elucidated the connection between allosteric NADP+ binding, oligomerization, and pathogenicity to determine whether oligomer stabilization can be used as a therapeutic strategy for G6PD deficiency (G6PDdef). We first solved the crystal structure for G6PDK403Q, a mutant that mimics the physiological acetylation of wild-type G6PD in erythrocytes and demonstrated that loss of allosteric NADP+ binding induces conformational changes in the dimer. These structural changes prevent tetramerization, are unique to Class I variants (the most severe form of G6PDdef), and cause the deactivation and destabilization of G6PD. We also introduced nonnative cysteines at the oligomer interfaces and found that the tetramer complex is more catalytically active and stable than the dimer. Furthermore, stabilizing the dimer and tetramer improved protein stability in clinical variants, regardless of clinical classification, with tetramerization also improving the activity of G6PDK403Q and Class I variants. These findings were validated using enzyme activity and thermostability assays, analytical size-exclusion chromatography (SEC), and SEC coupled with small-angle X-ray scattering (SEC-SAXS). Taken together, our findings suggest a potential therapeutic strategy for G6PDdef and provide a foundation for future drug discovery efforts.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Glucosefosfato Desidrogenase , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Deficiência de Glucosefosfato Desidrogenase/genética , Humanos , Mutação , NADP/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X
5.
J Vet Med Sci ; 82(8): 1093-1096, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32507786

RESUMO

An adult male Hooded Crane was found dead on the Izumi plane. At autopsy, subcutaneous nodules were found around the medial and lateral sides of the left distal tibiotarsus bone. The largest cross-section of the masses revealed a multilobular pattern, with small amounts of viscous mucus. Histopathologically, the nodules were composed of three types of neoplastic cells: chondrocytic cells with abundant lightly basophilic cartilaginous matrices, mesenchymal cells and a small portion of the neoplastic tissue consisted of undifferentiated neoplastic cells exhibiting a high mitotic count and frequent multinucleation. This is the first case of a chondrosarcoma including undifferentiated neoplastic cell proliferation in a wild Hooded Crane.


Assuntos
Neoplasias Ósseas/veterinária , Condrossarcoma/veterinária , Animais , Aves , Neoplasias Ósseas/patologia , Proliferação de Células , Condrossarcoma/patologia , Japão , Masculino
6.
Virus Genes ; 55(6): 815-824, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31549291

RESUMO

Viruses are believed to be ubiquitous; however, the diversity of viruses is largely unknown because of the bias of previous research toward pathogenic viruses. Deep sequencing is a promising and unbiased approach to detect viruses from animal-derived materials. Although cranes are known to be infected by several viruses such as influenza A viruses, previous studies targeted limited species of viruses, and thus viruses that infect cranes have not been extensively studied. In this study, we collected crane fecal samples in the Izumi plain in Japan, which is an overwintering site for cranes, and performed metagenomic shotgun sequencing analyses. We detected aviadenovirus-like sequences in the fecal samples and tentatively named the discovered virus crane-associated adenovirus 1 (CrAdV-1). We determined that our sequence accounted for approximately three-fourths of the estimated CrAdV-1 genome size (33,245 bp). The GC content of CrAdV-1 genome is 34.1%, which is considerably lower than that of other aviadenoviruses. Phylogenetic analyses revealed that CrAdV-1 clusters with members of the genus Aviadenovirus, but is distantly related to the previously identified aviadenoviruses. The protein sequence divergence between the DNA polymerase of CrAdV-1 and those of other aviadenoviruses is 45.2-46.8%. Based on these results and the species demarcation for the family Adenoviridae, we propose that CrAdV-1 be classified as a new species in the genus Aviadenovirus. Results of this study contribute to a deeper understanding of the diversity and evolution of viruses and provide additional information on viruses that infect cranes, which might lead to protection of the endangered species of cranes.


Assuntos
Infecções por Adenoviridae/genética , Aviadenovirus/genética , Doenças das Aves/genética , Infecções por Adenoviridae/virologia , Animais , Aviadenovirus/isolamento & purificação , Doenças das Aves/virologia , Aves/genética , Aves/virologia , Fezes/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Vírus da Influenza A/genética , Vírus da Influenza A/patogenicidade , Japão , Filogenia
7.
Nat Commun ; 9(1): 5367, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30560862

RESUMO

Botulinum neurotoxin (BoNT) delivers its protease domain across the vesicle membrane to enter the neuronal cytosol upon vesicle acidification. This process is mediated by its translocation domain (HN), but the molecular mechanism underlying membrane insertion of HN remains poorly understood. Here, we report two crystal structures of BoNT/A1 HN that reveal a novel molecular switch (termed BoNT-switch) in HN, where buried α-helices transform into surface-exposed hydrophobic ß-hairpins triggered by acidic pH. Locking the BoNT-switch by disulfide trapping inhibited the association of HN with anionic liposomes, blocked channel formation by HN, and reduced the neurotoxicity of BoNT/A1 by up to ~180-fold. Single particle counting studies showed that an acidic environment tends to promote BoNT/A1 self-association on liposomes, which is partly regulated by the BoNT-switch. These findings suggest that the BoNT-switch flips out upon exposure to the acidic endosomal pH, which enables membrane insertion of HN that subsequently leads to LC delivery.


Assuntos
Toxinas Botulínicas Tipo A/metabolismo , Membranas Intracelulares/metabolismo , Neurônios/metabolismo , Neurotoxinas/metabolismo , Sequência de Aminoácidos , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/isolamento & purificação , Cristalografia por Raios X , Citosol/metabolismo , Endossomos/metabolismo , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/metabolismo , Modelos Moleculares , Neurônios/citologia , Neurotoxinas/química , Neurotoxinas/isolamento & purificação , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Proteínas do Envelope Viral/química
8.
Acta Crystallogr D Struct Biol ; 73(Pt 5): 402-419, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28471365

RESUMO

Dengue virus (DENV), which has four serotypes (DENV-1 to DENV-4), is the causative agent of the viral infection dengue. DENV nonstructural protein 3 (NS3) comprises a serine protease domain and an RNA helicase domain which has nucleotide triphosphatase activities that are essential for RNA replication and viral assembly. Here, solution X-ray scattering was used to provide insight into the overall structure and flexibility of the entire NS3 and its recombinant helicase and protease domains for Dengue virus serotypes 2 and 4 in solution. The DENV-2 and DENV-4 NS3 forms are elongated and flexible in solution. The importance of the linker residues in flexibility and domain-domain arrangement was shown by the compactness of the individual protease and helicase domains. Swapping of the 174PPAVP179 linker stretch of the related Hepatitis C virus (HCV) NS3 into DENV-2 NS3 did not alter the elongated shape of the engineered mutant. Conformational alterations owing to RNA binding are described in the protease domain, which undergoes substantial conformational alterations that are required for the optimal catalysis of bound RNA. Finally, the effects of ATPase inhibitors on the enzymatically active DENV-2 and DENV-4 NS3 and the individual helicases are presented, and insight into the allosteric effect of the inhibitor quercetin is provided.


Assuntos
Vírus da Dengue/química , Dengue/virologia , Quercetina/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sequência de Aminoácidos , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica , RNA/metabolismo , Espalhamento a Baixo Ângulo , Alinhamento de Sequência , Proteínas não Estruturais Virais/metabolismo , Difração de Raios X
9.
J Struct Biol ; 194(3): 272-81, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26968362

RESUMO

Sliding clamps are opened and loaded onto primer template junctions by clamp loaders, and once loaded on DNA, confer processivity to replicative polymerases. Previously determined crystal structures of eukaryotic and T4 clamp loader-clamp complexes have captured the sliding clamps in either closed or only partially open interface conformations. In these solution structure studies, we have captured for the first time the clamp loader-sliding clamp complex from Escherichia coli using size exclusion chromatography coupled to small angle X-ray scattering (SEC-SAXS). The data suggests the sliding clamp is in an open conformation which is wide enough to permit duplex DNA binding. The data also provides information about spatial arrangement of the sliding clamp with respect to the clamp loader subunits and is compared to complex crystal structures determined from other organisms.


Assuntos
DNA Polimerase III/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA , Escherichia coli/enzimologia , Modelos Moleculares , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Cromatografia em Gel , DNA Bacteriano , Escherichia coli/genética , Proteínas de Escherichia coli , Conformação Proteica , Subunidades Proteicas , Espalhamento a Baixo Ângulo , Soluções , Difração de Raios X
10.
Biochemistry ; 54(51): 7514-23, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26529540

RESUMO

Type I protein arginine methyltransferases (PRMTs) catalyze asymmetric dimethylation of various proteins, and their dysregulations often correlate with tumorigenesis or developmental deficiency. Recent studies have focused on the in vivo substrate identification and the enzyme mechanism with peptide substrates. However, how PRMTs recognize substrates at the protein level remains unknown. PRMT8 is one of the least characterized type I PRMTs, and its crystal structure has not been reported. Here, we report the crystal structure of the PRMT8:SAH complex, identify a new non-histone protein substrate NIFK, and uncover a previously unknown regulatory region specifically required for recognizing NIFK. Instead of the canonical dimeric structure for other type I PRMTs, PRMT8 exists as a tetramer in solution. Using X-ray crystallography in combination with small-angle X-ray scattering experiments, the dimer of dimers architecture in which two PRMT8 dimers are held together mainly by ß strand interactions was proposed. Mutation of PRMT8-ß15 impedes the methylation of NIFK but still allows methylation of the histone H2A/H2B dimer or a peptide substrate, suggesting a possible structural basis for recognition of protein substrates. Lastly, we observed two PRMT8 dimer orientations resulting in open (without SAH) and closed (with SAH bound) conformations. The comparison between open and closed conformations may provide useful information for PRMT1/8 inhibitor design.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/metabolismo , Regulação Alostérica , Biopolímeros/química , Biopolímeros/metabolismo , Catálise , Cristalografia por Raios X , Conformação Proteica , Especificidade por Substrato
11.
Biophys Chem ; 175-176: 39-46, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23524290

RESUMO

We have done conformational study of hNck2 SH3 domain by means of far-ultraviolet (far-UV) circular dichroism (CD) and X-ray solution scattering (XSS). The results indicated that the following: (1) hNck2 SH3 domain protein exhibited concentration dependent monomer-dimer transition at neutral pH, while the secondary structure of this protein was independent of the protein concentration. (2) The hNck2 SH3 domain also exhibited pH dependent monomer-dimer transition. This monomer-dimer transition was accompanied with helix-ß transition of the secondary structural change. Moreover, the acid-induced conformation, which was previously studied by Liu and Song by CD and nuclear magnetic resonance (NMR), was found to be not compact, but the conformation of the protein at acidic pH was similar to the cold denatured state (C-state) reported by Yamada et al. for equine ß-lactoglobulin. We calculated that a structure of the equilibrium helix-rich intermediate of the hNck2 SH3 domain by DAMMIF program.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Oncogênicas/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Dicroísmo Circular , Dimerização , Humanos , Concentração de Íons de Hidrogênio , Proteínas Oncogênicas/metabolismo , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Difração de Raios X , Domínios de Homologia de src
12.
PLoS One ; 8(2): e57008, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23451136

RESUMO

The arginine methyltransferase PRMT5-MEP50 is required for embryogenesis and is misregulated in many cancers. PRMT5 targets a wide variety of substrates, including histone proteins involved in specifying an epigenetic code. However, the mechanism by which PRMT5 utilizes MEP50 to discriminate substrates and to specifically methylate target arginines is unclear. To test a model in which MEP50 is critical for substrate recognition and orientation, we determined the crystal structure of Xenopus laevis PRMT5-MEP50 complexed with S-adenosylhomocysteine (SAH). PRMT5-MEP50 forms an unusual tetramer of heterodimers with substantial surface negative charge. MEP50 is required for PRMT5-catalyzed histone H2A and H4 methyltransferase activity and binds substrates independently. The PRMT5 catalytic site is oriented towards the cross-dimer paired MEP50. Histone peptide arrays and solution assays demonstrate that PRMT5-MEP50 activity is inhibited by substrate phosphorylation and enhanced by substrate acetylation. Electron microscopy and reconstruction showed substrate centered on MEP50. These data support a mechanism in which MEP50 binds substrate and stimulates PRMT5 activity modulated by substrate post-translational modifications.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Domínio Catalítico , Proteínas Cromossômicas não Histona/química , Dimerização , Modelos Moleculares , Conformação Proteica , Proteína-Arginina N-Metiltransferases/química , Especificidade por Substrato , Proteínas de Xenopus/química , Xenopus laevis
13.
J Virol ; 86(18): 9976-82, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22761380

RESUMO

Nonenveloped viruses often invade membranes by exposing hydrophobic or amphipathic peptides generated by a proteolytic maturation step that leaves a lytic peptide noncovalently associated with the viral capsid. Since multiple copies of the same protein form many nonenveloped virus capsids, it is unclear if lytic peptides derived from subunits occupying different positions in a quasi-equivalent icosahedral capsid play different roles in host infection. We addressed this question with Nudaurelia capensis omega virus (NωV), an insect RNA virus with an icosahedral capsid formed by protein α, which undergoes autocleavage during maturation, producing the lytic γ peptide. NωV is a unique model because autocatalysis can be precisely initiated in vitro and is sufficiently slow to correlate lytic activity with γ peptide production. Using liposome-based assays, we observed that autocatalysis is essential for the potent membrane disruption caused by NωV. We observed that lytic activity is acquired rapidly during the maturation program, reaching 100% activity with less than 50% of the subunits cleaved. Previous time-resolved structural studies of partially mature NωV particles showed that, during this time frame, γ peptides derived from the pentamer subunits are produced and are organized in a vertical helical bundle that is projected toward the particle surface, while identical polypeptides in quasi-equivalent subunits are produced later or are in positions inappropriate for release. Our functional data provide experimental support for the hypothesis that pentamers containing a central helical bundle, observed in different nonenveloped virus families, are a specialized lytic motif.


Assuntos
Vírus de Insetos/química , Vírus de Insetos/fisiologia , Vírus de RNA/química , Vírus de RNA/fisiologia , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/fisiologia , Linhagem Celular , Concentração de Íons de Hidrogênio , Vírus de Insetos/genética , Lipossomos , Membranas Artificiais , Modelos Moleculares , Dados de Sequência Molecular , Nodaviridae/química , Nodaviridae/genética , Nodaviridae/fisiologia , Estrutura Quaternária de Proteína , Subunidades Proteicas , Vírus de RNA/genética , Montagem de Vírus/fisiologia
14.
Proteins ; 80(8): 2110-6, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22544723

RESUMO

The nuclear pore complex (NPC), embedded in the nuclear envelope, is a large, dynamic molecular assembly that facilitates exchange of macromolecules between the nucleus and the cytoplasm. The yeast NPC is an eightfold symmetric annular structure composed of ~456 polypeptide chains contributed by ~30 distinct proteins termed nucleoporins. Nup116, identified only in fungi, plays a central role in both protein import and mRNA export through the NPC. Nup116 is a modular protein with N-terminal "FG" repeats containing a Gle2p-binding sequence motif and a NPC targeting domain at its C-terminus. We report the crystal structure of the NPC targeting domain of Candida glabrata Nup116, consisting of residues 882-1034 [CgNup116(882-1034)], at 1.94 Å resolution. The X-ray structure of CgNup116(882-1034) is consistent with the molecular envelope determined in solution by small-angle X-ray scattering. Structural similarities of CgNup116(882-1034) with homologous domains from Saccharomyces cerevisiae Nup116, S. cerevisiae Nup145N, and human Nup98 are discussed.


Assuntos
Proteínas Fúngicas/química , Complexo de Proteínas Formadoras de Poros Nucleares/química , Poro Nuclear/química , Proteínas de Saccharomyces cerevisiae/química , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Candida glabrata/química , Cristalografia por Raios X , Humanos , Dados de Sequência Molecular , Complexos Multiproteicos/química , Membrana Nuclear/química , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/química
15.
J Virol ; 83(2): 1126-34, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18987141

RESUMO

Nudaurelia capensis omega virus-like particles have been characterized as a 480-A procapsid and a 410-A capsid, both with T=4 quasisymmetry. Procapsids transition to capsids when pH is lowered from 7.6 to 5.0. Capsids undergo autoproteolysis at residue 570, generating the 74-residue C-terminal polypeptide that remains with the particle. Here we show that the particle size becomes smaller under conditions between pH 6.8 and 6.0 without activating cleavage and that the particle remains at an intermediate size when the pH is carefully maintained. At pH 5.8, cleavage is very slow, becoming detectable only after 9 h. The optimum pH for cleavage is 5.0 (half-life, approximately 30 min), with a significant reduction in the cleavage rate at pH values below 5. We also show that lowering the pH is required only to make the virus particles compact and to presumably form the active site for autoproteolysis but not for the chemistry of cleavage. The cleavage reaction proceeds at pH 7.0 after approximately 10% of the subunits cleave at pH 5.0. Employing the virion crystal structure for reference, we investigated the role of electrostatic repulsion of acidic residues in the pH-dependent large conformational changes. Three mutations of Glu to Gln that formed procapsids showed three different phenotypes on maturation. One, close to the threefold and quasithreefold symmetry axes and far from the cleavage site, did not mature at pH 5, and electron cryomicroscopy reconstruction showed that it was intermediate in size between those of the procapsid and capsid; one near the cleavage site exhibited a wild-type phenotype; and a third, far from the cleavage site, resulted in cleavage of 50% of the subunits after 4 h, suggesting quasiequivalent specificity of the mutation.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Vírus de Insetos/fisiologia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Montagem de Vírus , Concentração de Íons de Hidrogênio , Modelos Moleculares , Mutação de Sentido Incorreto , Conformação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Vírion/ultraestrutura
16.
Genes Cells ; 11(4): 439-52, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16611246

RESUMO

Human rck/p54, a product of the gene cloned at the breakpoint of t(11; 14) (q23;q32) chromosomal translocation on 11q23 in B-cell lymphoma, is a member of the DEAD-box RNA helicase family. Here, the crystal structure of Nc-rck/p54, the N-terminal core domain of rck/p54, revealed that the P-loop in motif I formed a closed conformation, which was induced by Asn131, a residue unique to the RCK subfamily. It appears that ATP does not bind to the P-loop. The results of dynamic light scattering revealed to ATP-induced conformational change of rck/p54. It was demonstrated that free rck/p54 is a distended molecule in solution, and that the approach between N-terminal core and C-terminal domains for ATP binding would be essential when unwinding RNA. The results from helicase assay using electron micrograph, ATP hydrolytic and luciferase assay showed that c-myc IRES RNA, whose secondary structure regulates IRES-dependant translation, was unwound by rck/p54 and indicated that it is a good substrate for rck/p54. Over-expression of rck/p54 in HeLa cells caused growth inhibition and cell cycle arrest at G2/M with down-regulation of c-myc expression. These findings altogether suggest that rck/p54 may affect the IRES-dependent translation of c-myc even in the cells.


Assuntos
Proteínas Proto-Oncogênicas/química , RNA Nucleotidiltransferases/química , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Sítios de Ligação , Ciclo Celular/fisiologia , Divisão Celular/genética , Divisão Celular/fisiologia , Proliferação de Células , RNA Helicases DEAD-box , Regulação para Baixo , Fase G2/genética , Fase G2/fisiologia , Regulação da Expressão Gênica , Células HeLa , Humanos , Dados de Sequência Molecular , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA/química , RNA Nucleotidiltransferases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/química , Homologia de Sequência de Aminoácidos
17.
Genomics ; 88(1): 52-64, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16597497

RESUMO

The mouse embryonal carcinoma cell line ATDC5 provides an excellent model system for chondrogenesis in vitro. To understand better the molecular mechanisms of endochondral bone formation, we investigated gene expression profiles during the differentiation course of ATDC5 cells, using an in-house microarray harboring full-length-enriched cDNAs. For 28 days following chondrogenic induction, 507 genes were up- or down-regulated at least 1.5-fold. These genes were classified into five clusters based on their expression patterns. Genes for growth factor and cytokine pathways were significantly enriched in the cluster characterized by increases in expression during late stages of chondrocyte differentiation. mRNAs for decorin and osteoglycin, which have been shown to bind to transforming growth factors-beta and bone morphogenetic proteins, respectively, were found in this cluster and were detected in hypertrophic chondrocytes of developing mouse bones by in situ hybridization analysis. Taken together with assigned functions of individual genes in the cluster, interdigitated interaction between a number of intercellular signaling molecules is likely to take place in the late chondrogenic stage for autocrine and paracrine regulation among chondrocytes, as well as for chemoattraction and stimulation of progenitor cells of other lineages.


Assuntos
Diferenciação Celular , Condrócitos/citologia , Condrogênese/genética , Citocinas/genética , Regulação da Expressão Gênica no Desenvolvimento , Substâncias de Crescimento/genética , Animais , Linhagem Celular Tumoral , Condrócitos/metabolismo , Citocinas/metabolismo , Decorina , Regulação para Baixo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Biblioteca Gênica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Substâncias de Crescimento/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Proteoglicanas/genética , Proteoglicanas/metabolismo , Regulação para Cima
18.
Acta Crystallogr D Biol Crystallogr ; 60(Pt 1): 156-9, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14684915

RESUMO

The RCK gene was cloned on the basis of the t(11;14)(q23;q32) chromosome translocation observed in human B-cell lymphoma cell line RC-K8. This gene was found to be overexpressed in various kinds of tumours. The gene product, rck/p54, consisting of 472 amino-acid residues with molecular weight 53.2 kDa, belongs to the family of DEAD-box RNA helicases. Its ATP-dependent RNA-unwinding activity toward c-myc RNA molecules in vitro has recently been demonstrated. In the present study, limited proteolysis experiments of rck/p54 were used to truncate the N-terminal domain (residues 1-288; 31.8 kDa) of rck/p54, leading to successful crystallization of Nc-rck/p54, i.e. the N-terminal core domain (residues 70-288; 24.5 kDa) of rck/p54. Crystals of Nc-rck/p54 were grown to a size suitable for X-ray structure analysis using polyethylene glycol 3350 as the precipitant. The crystal belongs to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 65.5, b = 73.1, c = 84.8 A, and diffracts X-rays to beyond 2.0 A resolution.


Assuntos
Proteínas Proto-Oncogênicas/química , RNA Nucleotidiltransferases/química , Sequência de Aminoácidos , Cromatografia em Gel , Clonagem Molecular , Cristalização , Cristalografia por Raios X , RNA Helicases DEAD-box , DNA/química , DNA/genética , Eletroforese em Gel de Poliacrilamida , Humanos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas/genética , RNA Nucleotidiltransferases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tripsina/metabolismo
19.
Genes Cells ; 8(8): 671-6, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12875652

RESUMO

BACKGROUND: The rck/p54 protein of 473 amino acids belongs to the family of DEAD-box/putative RNA helicase proteins. DEAD-box proteins have been implicated in a wide variety of cellular processes ranging from the initiation of protein synthesis and ribosome biosynthesis to premRNA splicing by means of modifying the RNA structure. Our previous data suggested that rck/p54 positively affected the translation initiation of c-myc mRNA. RESULTS: The data obtained from morphological studies and surface plasmon resonance assays clearly indicated that the protein specifically bound to c-myc RNA transcripts (RNAs) and exhibited RNA unwinding activity toward c-myc RNAs in the presence of ATP in vitro. Experiments using a deletion mutant of rck/p54 retaining only its N-terminal 289 amino acids demonstrated that the deleted C-terminal 184 amino acid domain is involved in the RNA unwinding activity. CONCLUSION: These findings strongly suggest that rck/p54 may play an important role in translation initiation by restructuring mRNAs even in the cell and contribute to carcinogenesis.


Assuntos
Regulação da Expressão Gênica , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , RNA Nucleotidiltransferases/metabolismo , RNA/metabolismo , RNA Helicases DEAD-box , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Técnicas In Vitro , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-myc/genética , RNA/genética , RNA Nucleotidiltransferases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Deleção de Sequência , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA