Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 26(14): 2837-2842, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38252895

RESUMO

E7130 is a novel drug candidate with an exceedingly complex chemical structure of the halichondrin class, discovered by a total synthesis approach through joint research between the Kishi group at Harvard University and Eisai. Only 18 months after completion of the initial milligram-scale synthesis, ten-gram-scale synthesis of E7130 was achieved, providing the first good manufacturing practice (GMP) batch to supply clinical trials. This paper highlights the challenges in developing ten-gram-scale synthesis from the milligram-scale synthesis.


Assuntos
Antineoplásicos , Humanos , Antineoplásicos/farmacologia
2.
Cancer Res ; 81(4): 1052-1062, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33408116

RESUMO

The Wnt/ß-catenin signaling pathway plays crucial roles in embryonic development and the development of multiple types of cancer, and its aberrant activation provides cancer cells with escape mechanisms from immune checkpoint inhibitors. E7386, an orally active selective inhibitor of the interaction between ß-catenin and CREB binding protein, which is part of the Wnt/ß-catenin signaling pathway, disrupts the Wnt/ß-catenin signaling pathway in HEK293 and adenomatous polyposis coli (APC)-mutated human gastric cancer ECC10 cells. It also inhibited tumor growth in an ECC10 xenograft model and suppressed polyp formation in the intestinal tract of ApcMin /+ mice, in which mutation of Apc activates the Wnt/ß-catenin signaling pathway. E7386 demonstrated antitumor activity against mouse mammary tumors developed in mouse mammary tumor virus (MMTV)-Wnt1 transgenic mice. Gene expression profiling using RNA sequencing data of MMTV-Wnt1 tumor tissue from mice treated with E7386 showed that E7386 downregulated genes in the hypoxia signaling pathway and immune responses related to the CCL2, and IHC analysis showed that E7386 induced infiltration of CD8+ cells into tumor tissues. Furthermore, E7386 showed synergistic antitumor activity against MMTV-Wnt1 tumor in combination with anti-PD-1 antibody. In conclusion, E7386 demonstrates clear antitumor activity via modulation of the Wnt/ß-catenin signaling pathway and alteration of the tumor and immune microenvironments, and its antitumor activity can be enhanced in combination with anti-PD-1 antibody. SIGNIFICANCE: These findings demonstrate that the novel anticancer agent, E7386, modulates Wnt/ß-catenin signaling, altering the tumor immune microenvironment and exhibiting synergistic antitumor activity in combination with anti-PD-1 antibody.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/patologia , Fragmentos de Peptídeos/metabolismo , Pirazinas/farmacologia , Sialoglicoproteínas/metabolismo , Triazinas/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Animais , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Feminino , Genes APC , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Fragmentos de Peptídeos/antagonistas & inibidores , Ligação Proteica/efeitos dos fármacos , Pirazinas/uso terapêutico , Sialoglicoproteínas/antagonistas & inibidores , Triazinas/uso terapêutico , Via de Sinalização Wnt/genética , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , beta Catenina/antagonistas & inibidores
3.
Vasc Cell ; 6: 18, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25197551

RESUMO

BACKGROUND: Lenvatinib is an oral inhibitor of multiple receptor tyrosine kinases (RTKs) targeting vascular endothelial growth factor receptor (VEGFR1-3), fibroblast growth factor receptor (FGFR1-4), platelet growth factor receptor α (PDGFR α), RET and KIT. Antiangiogenesis activity of lenvatinib in VEGF- and FGF-driven angiogenesis models in both in vitro and in vivo was determined. Roles of tumor vasculature (microvessel density (MVD) and pericyte coverage) as biomarkers for lenvatinib were also examined in this study. METHOD: We evaluated antiangiogenesis activity of lenvatinib against VEGF- and FGF-driven proliferation and tube formation of HUVECs in vitro. Effects of lenvatinib on in vivo angiogenesis, which was enhanced by overexpressed VEGF or FGF in human pancreatic cancer KP-1 cells, were examined in the mouse dorsal air sac assay. We determined antitumor activity of lenvatinib in a broad panel of human tumor xenograft models to test if vascular score, which consisted of high MVD and low pericyte coverage, was associated with sensitivity to lenvatinib treatment. Vascular score was also analyzed using human tumor specimens with 18 different types of human primary tumors. RESULT: Lenvatinib inhibited VEGF- and FGF-driven proliferation and tube formation of HUVECs in vitro. In vivo angiogenesis induced by overexpressed VEGF (KP-1/VEGF transfectants) or FGF (KP-1/FGF transfectants) was significantly suppressed with oral treatments of lenvatinib. Lenvatinib showed significant antitumor activity in KP-1/VEGF and five 5 of 7 different types of human tumor xenograft models at between 1 to 100 mg/kg. We divided 19 human tumor xenograft models into lenvatinib-sensitive (tumor-shrinkage) and relatively resistant (slow-growth) subgroups based on sensitivity to lenvatinib treatments at 100 mg/kg. IHC analysis showed that vascular score was significantly higher in sensitive subgroup than relatively resistant subgroup (p < 0.0004). Among 18 types of human primary tumors, kidney cancer had the highest MVD, while liver cancer had the lowest pericyte coverage, and cancers in Kidney and Stomach had highest vascular score. CONCLUSION: These results indicated that Lenvatinib inhibited VEGF- and FGF-driven angiogenesis and showed a broad spectrum of antitumor activity with a wide therapeutic window. MVD and pericyte-coverage of tumor vasculature might be biomarkers and suggest cases that would respond for lenvatinib therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA