Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(2): 1595-1602, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36526849

RESUMO

BACKGROUND: Temporomandibular joint osteoarthritis (TMJ-OA) causes cartilage degeneration, bone cavitation, and fibrosis of the TMJ. However, the mechanisms underlying the fibroblast-like synoviocyte (FLS)-mediated inflammatory activity in TMJ-OA remain unclear. METHODS AND RESULTS: Reverse transcription-quantitative polymerase chain reaction analysis revealed that the P2Y1, P2Y12, and P2Y13 purinergic receptor agonist adenosine 5'-diphosphate (ADP) significantly induces monocyte chemotactic protein 1 (MCP-1)/ C-C motif chemokine ligand 2 (CCL2) expression in the FLS1 synovial cell line. In contrast, the uracil nucleotide UTP, which is a P2Y2 and P2Y4 agonist, has no significant effect on MCP-1/CCL2 production in FLS1 cells. In addition, the P2Y13 antagonist MRS 2211 considerably decreases the expression of ADP-induced MCP-1/CCL2, whereas ADP stimulation enhances extracellular signal-regulated kinase (ERK) phosphorylation. Moreover, it was found that the mitogen-activated protein kinase/ERK kinase (MEK) inhibitor U0126 reduces ADP-induced MCP-1/CCL2 expression. CONCLUSION: ADP enhances MCP-1/CCL2 expression in TMJ FLSs via P2Y13 receptors in an MEK/ERK-dependent manner, thus resulting in inflammatory cell infiltration in the TMJ. Collectively, the findings of this study contribute to a partial clarification of the signaling pathway underlying the development of inflammation in TMJ-OA and can help identify potential therapeutic targets for suppressing ADP-mediated purinergic signaling in this disease.


Assuntos
Receptores Purinérgicos P2 , Sinoviócitos , Camundongos , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , MAP Quinases Reguladas por Sinal Extracelular , Difosfatos , Sinoviócitos/metabolismo , Ligantes , Receptores Purinérgicos P2/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno , Articulação Temporomandibular , Fibroblastos/metabolismo , Adenosina , Difosfato de Adenosina/farmacologia , Difosfato de Adenosina/metabolismo , Células Cultivadas
2.
Exp Ther Med ; 20(3): 1967-1974, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32782506

RESUMO

Osteoarthritis (OA)-related fibrosis is a possible cause of temporomandibular joint (TMJ) stiffness. However, the molecular mechanisms underlying the fibrogenic activity in fibroblast-like synoviocytes (FLSs) remain to be clarified. The present study examined the effects of receptor tyrosine kinase (RTK) ligands, such as fibroblast growth factor (FGF)-1 and epidermal growth factor (EGF), on myofibroblastic differentiation of the FLS cell line FLS1, which is derived from the mouse TMJ. The present study revealed that both FGF-1 and EGF dose-dependently suppressed the expression of the myofibroblast (MF) markers, including α-smooth muscle actin (α-SMA) and type I collagen, in FLS1 cells. Additionally, both FGF-1 and EGF activated extracellular signal-regulated kinase (ERK) in FLS1 cells. In addition, the mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) inhibitor U0126 abrogated the FGF-1- and EGF-mediated suppression of MF marker expression. On the other hand, inflammatory cytokines, such as interleukin-1ß and tumor necrosis factor-α, also suppressed the expression of MF markers in FLS1 cells. Importantly, U0126 abrogated the inflammatory cytokine-mediated suppression of MF marker expression. Interestingly, RTK ligands and inflammatory cytokines additively suppressed the expression of type I collagen. These results suggested that RTK ligands and inflammatory cytokines cooperatively inhibited the fibrogenic activity in FLSs derived from the TMJ in a MEK/ERK-dependent manner. The present findings partially clarify the molecular mechanisms underlying the development of OA-related fibrosis in the TMJ and may aid in identifying therapeutic targets for this condition. Additionally, FGF-1 and EGF could be therapeutically utilized to prevent OA-related fibrosis around the inflammatory TMJ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA