Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952218

RESUMO

The hallmark of amyloidosis, such as Alzheimer's disease and Parkinson's disease, is the deposition of amyloid fibrils in various internal organs. The onset of the disease is related to the strength of cytotoxicity caused by toxic amyloid species. Furthermore, amyloid fibrils show polymorphism, where some types of fibrils are cytotoxic while others are not. It is thus essential to understand the molecular mechanism of cytotoxicity, part of which is caused by the interaction between amyloid polymorphic fibrils and cell membranes. Here, using amyloid polymorphs of hen egg white lysozyme, which is associated with hereditary systemic amyloidosis, showing different levels of cytotoxicity and liposomes of DMPC and DMPG, changes in the secondary structure of the polymorphs and the structural state of phospholipid membranes caused by the interaction were investigated using vacuum-ultraviolet circular dichroism (VUVCD) and Laurdan fluorescence measurements, respectively. Analysis has shown that the more cytotoxic polymorph increases the antiparallel ß-sheet content and causes more disorder in the membrane structure while the other less cytotoxic polymorph shows the opposite structural changes and causes less structural disorder in the membrane. These results suggest a close correlation between the structural properties of amyloid fibrils and the degree of structural disorder of phospholipid membranes, both of which are involved in the fundamental process leading to amyloid cytotoxicity.

2.
Biomol NMR Assign ; 18(1): 65-70, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38526839

RESUMO

NCYM is a cis-antisense gene of MYCN oncogene and encodes an oncogenic protein that stabilizes MYCN via inhibition of GSK3b. High NCYM expression levels are associated with poor clinical outcomes in human neuroblastomas, and NCYM overexpression promotes distant metastasis in animal models of neuroblastoma. Using vacuum-ultraviolet circular dichroism and small-angle X-ray scattering, we previously showed that NCYM has high flexibility with partially folded structures; however, further structural characterization is required for the design of anti-cancer agents targeting NCYM. Here we report the 1H, 15N and 13C nuclear magnetic resonance assignments of NCYM. Secondary structure prediction using Secondary Chemical Shifts and TALOS-N analysis demonstrates that the structure of NCYM is essentially disordered, even though residues in the central region of the peptide clearly present a propensity to adopt a dynamic helical structure. This preliminary study provides foundations for further analysis of interaction between NCYM and potential partners.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Humanos , Sequência de Aminoácidos , Estrutura Secundária de Proteína , Isótopos de Nitrogênio
3.
Front Oncol ; 13: 1213678, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074684

RESUMO

NCYM, a Homininae-specific oncoprotein, is the first de novo gene product experimentally shown to have oncogenic functions. NCYM stabilizes MYCN and ß-catenin via direct binding and inhibition of GSK3ß and promotes cancer progression in various tumors. Thus, the identification of compounds that binds to NCYM and structural characterization of the complex of such compounds with NCYM are required to deepen our understanding of the molecular mechanism of NCYM function and eventually to develop anticancer drugs against NCYM. In this study, the DNA aptamer that specifically binds to NCYM and enhances interaction between NCYM and GSK3ß were identified for the first time using systematic evolution of ligands by exponential enrichment (SELEX). The structural properties of the complex of the aptamer and NCYM were investigated using atomic force microscopy (AFM) in combination with truncation and mutation of DNA sequence, pointing to the regions on the aptamer required for NCYM binding. Further analysis was carried out by small-angle X-ray scattering (SAXS). Structural modeling based on SAXS data revealed that when isolated, NCYM shows high flexibility, though not as a random coil, while the DNA aptamer exists as a dimer in solution. In the complex state, models in which NCYM was bound to a region close to an edge of the aptamer reproduced the SAXS data. Therefore, using a combination of SELEX, AFM, and SAXS, the present study revealed the structural properties of NCYM in its functionally active form, thus providing useful information for the possible future design of novel anti-cancer drugs targeting NCYM.

4.
Life (Basel) ; 12(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36013438

RESUMO

Incoherent neutron scattering (iNS) is one of the most powerful techniques to study the dynamical behavior of bio-macromolecules such as proteins and lipid molecules or whole cells. This technique has widely been used to elucidate the fundamental aspects of molecular motions that manifest in the bio-macromolecules in relation to their intrinsic molecular properties and biological functions. Furthermore, in the last decade, iNS studies focusing on a possible relationship between molecular dynamics and biological malfunctions, i.e., human diseases and disorders, have gained importance. In this review, we summarize recent iNS studies on pathologically relevant proteins and lipids and discuss how the findings are of importance to elucidate the molecular mechanisms of human diseases and disorders that each study targets. Since some diseases such as amyloidosis have become more relevant in the aging society, research in this field will continue to develop further and be more important in the current increasing trend for longevity worldwide.

5.
Front Oncol ; 11: 688852, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497756

RESUMO

NCYM, a cis-antisense gene of MYCN, encodes a Homininae-specific protein that promotes the aggressiveness of human tumors. Newly evolved genes from non-genic regions are known as de novo genes, and NCYM was the first de novo gene whose oncogenic functions were validated in vivo. Targeting NCYM using drugs is a potential strategy for cancer therapy; however, the NCYM structure must be determined before drug design. In this study, we employed vacuum-ultraviolet circular dichroism to evaluate the secondary structure of NCYM. The SUMO-tagged NCYM and the isolated SUMO tag in both hydrogenated and perdeuterated forms were synthesized and purified in a cell-free in vitro system, and vacuum-ultraviolet circular dichroism spectra were measured. Significant differences between the tagged NCYM and the isolated tag were evident in the wavelength range of 190-240 nm. The circular dichroism spectral data combined with a neural network system enabled to predict the secondary structure of NCYM at the amino acid level. The 129-residue tag consists of α-helices (approximately 14%) and ß-strands (approximately 29%), which corresponded to the values calculated from the atomic structure of the tag. The 238-residue tagged NCYM contained approximately 17% α-helices and 27% ß-strands. The location of the secondary structure predicted using the neural network revealed that these secondary structures were enriched in the Homininae-specific region of NCYM. Deuteration of NCYM altered the secondary structure at D90 from an α-helix to another structure other than α-helix and ß-strand although this change was within the experimental error range. All four nonsynonymous single-nucleotide polymorphisms (SNPs) in human populations were in this region, and the amino acid alteration in SNP N52S enhanced Myc-nick production. The D90N mutation in NCYM promoted NCYM-mediated MYCN stabilization. Our results reveal the secondary structure of NCYM and demonstrated that the Homininae-specific domain of NCYM is responsible for MYCN stabilization.

6.
Front Mol Biosci ; 8: 812096, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111814

RESUMO

Lysozyme amyloidosis is a hereditary disease, which is characterized by the deposition of lysozyme amyloid fibrils in various internal organs. It is known that lysozyme fibrils show polymorphism and that polymorphs formed at near-neutral pH have the ability to promote more monomer binding than those formed at acidic pH, indicating that only specific polymorphs become dominant species in a given environment. This is likely due to the polymorph-specific configurational diffusion. Understanding the possible differences in dynamical behavior between the polymorphs is thus crucial to deepen our knowledge of amyloid polymorphism and eventually elucidate the molecular mechanism of lysozyme amyloidosis. In this study, molecular dynamics at sub-nanosecond timescale of two kinds of polymorphic fibrils of hen egg white lysozyme, which has long been used as a model of human lysozyme, formed at pH 2.7 (LP27) and pH 6.0 (LP60) was investigated using elastic incoherent neutron scattering (EINS) and quasi-elastic neutron scattering (QENS). Analysis of the EINS data showed that whereas the mean square displacement of atomic motions is similar for both LP27 and LP60, LP60 contains a larger fraction of atoms moving with larger amplitudes than LP27, indicating that the dynamical difference between the two polymorphs lies not in the averaged amplitude, but in the distribution of the amplitudes. Furthermore, analysis of the QENS data showed that the jump diffusion coefficient of atoms is larger for LP60, suggesting that the atoms of LP60 undergo faster diffusive motions than those of LP27. This study thus characterizes the dynamics of the two lysozyme polymorphs and reveals that the molecular dynamics of LP60 is enhanced compared with that of LP27. The higher molecular flexibility of the polymorph would permit to adjust its conformation more quickly than its counterpart, facilitating monomer binding.

7.
J Phys Chem Lett ; 10(23): 7505-7509, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31743029

RESUMO

Characterization of the dynamics of disordered polypeptide chains is required to elucidate the behavior of intrinsically disordered proteins and proteins under non-native states related to the folding process. Here we develop a method using quasielastic neutron scattering, combined with small-angle X-ray scattering and dynamic light scattering, to evaluate segmental motions of proteins as well as diffusion of the entire molecules and local side-chain motions. We apply this method to RNase A under the unfolded and molten-globule (MG) states. The diffusion coefficients arising from the segmental motions are evaluated and found to be different between the unfolded and MG states. The values obtained here are consistent with those obtained using the fluorescence-based techniques. These results demonstrate not only feasibility of this method but also usefulness to characterize the behavior of proteins under various disordered states.


Assuntos
Ribonuclease Pancreático/química , Espalhamento a Baixo Ângulo , Difusão , Difusão Dinâmica da Luz , Transferência de Energia , Espectroscopia de Ressonância Magnética , Difração de Nêutrons , Desdobramento de Proteína , Ribonuclease Pancreático/metabolismo
8.
Circ J ; 77(3): 741-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23220799

RESUMO

BACKGROUND: Left ventricular (LV) hypertrophy is often present in patients with diastolic heart failure. However, stiffness of hypertrophied cardiomyocytes in the transverse direction has not been fully elucidated. The aim of this study was to assess passive cardiomyocyte stiffness of hypertrophied hearts in the transverse direction and the influence of actin-myosin cross-bridge formation on the stiffness. METHODS AND RESULTS: Wistar rats received a vehicle (control) or isoproterenol (ISO) subcutaneously. After 7 days, compared with the controls, ISO administration had significantly increased heart weight and LV wall thickness and had decreased peak early annular relaxation velocity (e') assessed by echocardiography. Elastic modulus of living cardiomyocytes in the transverse direction assessed by an atomic force microscope was significantly higher in the ISO group than in controls. We added butanedione monoxime (BDM), an inhibitor of actin-myosin interaction, and blebbistatin, a specific myosin II inhibitor, to the medium. BDM and blebbistatin significantly reduced the elastic modulus of cardiomyocytes in the ISO group. X-ray diffraction analysis showed that the reflection intensity ratio (I((1,0))/I((1,1))) at diastole was not different before and after treatment with BDM, which induces complete relaxation, in control hearts, but that I((1,0))/I((1,1)) was significantly increased after BDM treatment in the ISO group, indicating residual cross-bridge formation in hypertrophied hearts. CONCLUSIONS: Passive cardiomyocyte stiffness in the transverse direction is increased in hearts with ISO-induced hypertrophy and this is caused by residual actin-myosin cross-bridge formation.


Assuntos
Actinas/metabolismo , Agonistas Adrenérgicos beta/efeitos adversos , Cardiomegalia/induzido quimicamente , Elasticidade/fisiologia , Hipertrofia Ventricular Esquerda/induzido quimicamente , Miócitos Cardíacos/patologia , Miosinas/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Células Cultivadas , Diacetil/análogos & derivados , Diacetil/farmacologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Isoproterenol/efeitos adversos , Isoproterenol/farmacologia , Masculino , Microscopia de Força Atômica , Miócitos Cardíacos/diagnóstico por imagem , Miócitos Cardíacos/fisiologia , Tamanho do Órgão/efeitos dos fármacos , Músculos Papilares/diagnóstico por imagem , Músculos Papilares/efeitos dos fármacos , Músculos Papilares/patologia , Radiografia , Ratos , Ratos Wistar , Ultrassonografia
9.
Biochemistry ; 51(19): 3963-70, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22548417

RESUMO

Calmodulin undergoes characteristic conformational changes by binding Ca(2+), which allows it to bind to more than 300 target proteins and regulate numerous intracellular processes in all eukaryotic cells. We measured the conformational changes of calmodulin upon Ca(2+) and mastoparan binding using the time-resolved small-angle X-ray scattering technique combined with flash photolysis of caged calcium. This measurement system covers the time range of 0.5-180 ms. Within 10 ms of the stepwise increase in Ca(2+) concentration, we identified a distinct compact conformational state with a drastically different molecular dimension. This process is too fast to study with a conventional stopped-flow apparatus. The compact conformational state was also observed without mastoparan, indicating that the calmodulin forms a compact globular conformation by itself upon Ca(2+) binding. This new conformational state of calmodulin seems to regulate Ca(2+) binding and conformational changes in the N-terminal domain. On the basis of this finding, an allosteric mechanism, which may have implications in intracellular signal transduction, is proposed.


Assuntos
Cálcio/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Acetatos/química , Animais , Bovinos , Etilenodiaminas/química , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Espalhamento de Radiação , Venenos de Vespas/metabolismo , Raios X
10.
J Struct Biol ; 178(3): 329-37, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22503702

RESUMO

We report the first X-ray diffraction patterns recorded from single axonemes of eukaryotic flagella with a diameter of only <0.2 µm, by using the technique of cryomicrodiffraction. A spermatozoon isolated from the testis of a fruit fly, Drosophila melanogaster, either intact or demembranated, was mounted straight in a glass capillary, quickly frozen and its 800-µm segment was irradiated end-on with intense synchrotron radiation X-ray microbeams (diameter, ~2 µm) at 74 K. Well-defined diffraction patterns were recorded, consisting of a large number of isolated reflection spots, extending up to 1/5 nm(-1). These reflections showed a tendency to peak every 20°, i.e., the patterns had features of an 18-fold rotational symmetry as expected from the 9-fold rotational symmetry of axonemal structure. This means that the axonemes remain untwisted, even after the manual mounting procedure. The diffraction patterns were compared with the results of model calculations based on a published electron micrograph of the Drosophila axoneme. The comparison provided information about the native state of axoneme, including estimates of axonemal diameter, interdoublet spacing, and masses of axonemal components relative to those of microtubules (e.g., radial spokes, dynein arms, and proteins associated with accessory singlet microtubules). When combined with the genetic resource of Drosophila, the technique presented here will serve as a powerful tool for studying the structure-function relationship of eukaryotic flagella in general.


Assuntos
Axonema/química , Axonema/metabolismo , Difração de Raios X/métodos , Animais , Drosophila , Dineínas/química , Dineínas/metabolismo , Masculino , Microtúbulos/química , Microtúbulos/metabolismo , Espermatozoides/metabolismo
11.
J Mol Biol ; 383(5): 1019-36, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-18817786

RESUMO

In order to investigate the structural changes of the myofilaments involved in the phenomenon of summation in skeletal muscle contraction, we studied small-angle x-ray intensity changes during twitches of frog skeletal muscle elicited by either a single or a double stimulus at 16 degrees C. The separation of the pulses in the double-pulse stimulation was either 15 or 30 ms. The peak tension was more than doubled by the second stimulus. The equatorial (1,0) intensity, which decreased upon the first stimulus, further decreased with the second stimulus, indicating that more cross-bridges are formed. The meridional reflections from troponin at 1/38.5 and 1/19.2 nm(-1) were affected only slightly by the second stimulus, showing that attachment of a small number of myosin heads to actin can make a cooperative structural change. In overstretched muscle, the intensity increase of the troponin reflection in response to the second stimulus was smaller than that to the first stimulus. These results show that the summation is not due to an increased Ca binding to troponin and further suggest a highly cooperative nature of the structural changes in the thin filament that are related to the regulation of contraction.


Assuntos
Citoesqueleto de Actina/química , Contração Muscular/fisiologia , Rana catesbeiana/fisiologia , Actinas/metabolismo , Animais , Estimulação Elétrica , Técnicas In Vitro , Tono Muscular/fisiologia , Miosinas/metabolismo , Sarcômeros/metabolismo , Troponina/metabolismo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA