Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurochem Int ; 163: 105479, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36608872

RESUMO

Microglia play a central role in neuroinflammatory processes by releasing proinflammatory mediators. This process is tightly regulated along with neuronal activities, and neurotransmitters may link neuronal activities to the microglia. In this study, we showed that primary cultured rat microglia express the dopamine (DA) D1 receptor (D1R) and D4R, but not D2R, D3R, or D5R. In response to a D1R-specific agonist SKF-81297 (SKF), the cultured microglia exhibited increased intracellular cAMP levels. DA and SKF suppressed lipopolysaccharide (LPS)-induced expression of interleukin-1ß (IL-1ß) and tumor necrosis α (TNFα) in cultured microglia. Microglia in the normal mature rat prefrontal cortex (PFC) were sorted and significant expression of D1R, D2R, and D4R was observed. A delirium model was established by administering LPS intraperitoneally to mature male Wistar rats. The model also displayed sleep-wake disturbances as revealed by electroencephalogram and electromyogram recordings as well as increased expression of IL-1ß and TNFα in the PFC. DA levels were increased in the PFC 21 h after LPS administration. Increased cytokine expression was observed in sorted microglia from the PFC of the delirium model; however, TNFα, but not IL-1ß expression, was abruptly decreased 21 h after LPS administration in the delirium model, whereas DA levels were increased. A D1R antagonist SCH23390 partially abolished the TNFα expression change. This suggests that endogenous DA may play a role in suppressing neuroinflammation. Administration of the DA precursor L-DOPA or SKF to the delirium model rats inhibited the expression of IL-1ß and TNFα. The simultaneous administration of clozapine, a D4R antagonist, strengthened the suppressive effects of L-DOPA. These results suggest that D1R mediates the suppressive effects of LPS-induced neuroinflammation, in which microglia may play an important role. Agonists for D1R may be effective for treating delirium.


Assuntos
Delírio , Dopamina , Animais , Masculino , Ratos , Anti-Inflamatórios/farmacologia , Encéfalo , Dopamina/farmacologia , Levodopa/farmacologia , Lipopolissacarídeos/toxicidade , Microglia , Doenças Neuroinflamatórias , Ratos Wistar , Fator de Necrose Tumoral alfa/farmacologia , Receptores de Dopamina D1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA