Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Cell Transplant ; 32: 9636897231198296, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37710973

RESUMO

We have developed an autologous transplantation method using adipose tissue-derived multi-lineage progenitor cells (ADMPCs) as a method of periodontal tissue regeneration that can be adapted to severe periodontal disease. Our previous clinical study confirmed the safety of autologous transplantation of ADMPCs and demonstrated its usefulness in the treatment of severe periodontal disease. However, in the same clinical study, we found that the fibrin gel used as the scaffold material might have caused gingival recession and impaired tissue regeneration in some patients. Carbonate apatite has a high space-making capacity and has been approved in Japan for periodontal tissue regeneration. In this study, we selected carbonate apatite as a candidate scaffold material for ADMPCs and conducted an in vitro examination of its effect on the cellular function of ADMPCs. We further performed autologous ADMPC transplantation with carbonate apatite as the scaffold material in a model of one-wall bone defects in beagles and then analyzed the effect on periodontal tissue regeneration. The findings showed that carbonate apatite did not affect the cell morphology of ADMPCs and that it promoted proliferation. Moreover, no effect on secretor factor transcription was found. The results of the in vivo analysis confirmed the space-making capacity of carbonate apatite, and the acquisition of significant new attachment was observed in the group involving ADMPC transplantation with carbonate apatite compared with the group involving carbonate apatite application alone. Our results demonstrate the usefulness of carbonate apatite as a scaffold material for ADMPC transplantation.


Assuntos
Regeneração Óssea , Doenças Periodontais , Humanos , Animais , Cães , Células-Tronco , Tecido Adiposo , Transplante Autólogo , Doenças Periodontais/terapia , Regeneração Tecidual Guiada Periodontal/métodos
2.
Stem Cells Transl Med ; 12(6): 379-390, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37263619

RESUMO

Human multipotent mesenchymal stromal/stem cells (MSCs) have been utilized in cell therapy for various diseases and their clinical applications are expected to increase in the future. However, the variation in MSC-based product quality due to the MSC heterogeneity has resulted in significant constraints in the clinical utility of MSCs. Therefore, we hypothesized that it might be important to identify and ensure/enrich suitable cell subpopulations for therapies using MSC-based products. In this study, we aimed to identify functional cell subpopulations to predict the efficacy of angiogenic therapy using bone marrow-derived MSCs (BM-MSCs). To assess its angiogenic potency, we observed various levels of vascular endothelial growth factor (VEGF) secretion among 11 donor-derived BM-MSC lines under in vitro ischemic culture conditions. Next, by clarifying the heterogeneity of BM-MSCs using single-cell RNA-sequencing analysis, we identified a functional cell subpopulation that contributed to the overall VEGF production in BM-MSC lines under ischemic conditions. We also found that leucine-rich repeat-containing 75A (LRRC75A) was more highly expressed in this cell subpopulation than in the others. Importantly, knockdown of LRRC75A using small interfering RNA resulted in significant inhibition of VEGF secretion in ischemic BM-MSCs, indicating that LRRC75A regulates VEGF secretion under ischemic conditions. Therefore, LRRC75A may be a useful biomarker to identify cell subpopulations that contribute to the angiogenic effects of BM-MSCs. Our work provides evidence that a strategy based on single-cell transcriptome profiles is effective for identifying functional cell subpopulations in heterogeneous MSC-based products.


Assuntos
Células-Tronco Mesenquimais , Fator A de Crescimento do Endotélio Vascular , Humanos , Células da Medula Óssea , Diferenciação Celular , Proliferação de Células , Isquemia/genética , Isquemia/terapia , Isquemia/metabolismo , Análise da Expressão Gênica de Célula Única , Células-Tronco , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/farmacologia
3.
Sci Rep ; 12(1): 8126, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581234

RESUMO

Periodontitis is a chronic inflammatory disease that destroys tooth-supporting periodontal tissue. Current periodontal regenerative therapies have unsatisfactory efficacy; therefore, periodontal tissue engineering might be established by developing new cell-based therapies. In this study, we evaluated the safety and efficacy of adipose tissue-derived multi-lineage progenitor cells (ADMPC) autologous transplantation for periodontal tissue regeneration in humans. We conducted an open-label, single-arm exploratory phase I clinical study in which 12 periodontitis patients were transplanted with autologous ADMPCs isolated from subcutaneous adipose tissue. Each patient underwent flap surgery during which autologous ADMPCs were transplanted into the bone defect with a fibrin carrier material. Up to 36 weeks after transplantation, we performed a variety of clinical examinations including periodontal tissue inspection and standardized dental radiographic analysis. A 36-week follow-up demonstrated no severe transplantation-related adverse events in any cases. ADMPC transplantation reduced the probing pocket depth, improved the clinical attachment level, and induced neogenesis of alveolar bone. Therapeutic efficiency was observed in 2- or 3-walled vertical bone defects as well as more severe periodontal bone defects. These results suggest that autologous ADMPC transplantation might be an applicable therapy for severe periodontitis by inducing periodontal regeneration.


Assuntos
Perda do Osso Alveolar , Periodontite , Tecido Adiposo/cirurgia , Perda do Osso Alveolar/cirurgia , Regeneração Óssea , Seguimentos , Regeneração Tecidual Guiada Periodontal/métodos , Humanos , Periodontite/cirurgia , Células-Tronco , Transplante Autólogo
4.
Sci Rep ; 11(1): 11407, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075124

RESUMO

Highly sensitive detection of residual undifferentiated pluripotent stem cells is essential for the quality and safety of cell-processed therapeutic products derived from human induced pluripotent stem cells (hiPSCs). We previously reported the generation of an adenovirus (Ad) vector and adeno-associated virus vectors that possess a suicide gene, inducible Caspase 9 (iCasp9), which makes it possible to sensitively detect undifferentiated hiPSCs in cultures of hiPSC-derived cardiomyocytes. In this study, we investigated whether these vectors also allow for detection of undifferentiated hiPSCs in preparations of hiPSC-derived neural progenitor cells (hiPSC-NPCs), which have been expected to treat neurological disorders. To detect undifferentiated hiPSCs, the expression of pluripotent stem cell markers was determined by immunostaining and flow cytometry. Using immortalized NPCs as a model, the Ad vector was identified to be the most efficient among the vectors tested in detecting undifferentiated hiPSCs. Moreover, we found that the Ad vector killed most hiPSC-NPCs in an iCasp9-dependent manner, enabling flow cytometry to detect undifferentiated hiPSCs intermingled at a lower concentration (0.002%) than reported previously (0.1%). These data indicate that the Ad vector selectively eliminates hiPSC-NPCs, thus allowing for sensitive detection of hiPSCs. This cytotoxic viral vector could contribute to ensuring the quality and safety of hiPSCs-NPCs for therapeutic use.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Células-Tronco Neurais/citologia , Adenoviridae/genética , Diferenciação Celular , Células Cultivadas , Vetores Genéticos , Humanos
5.
Stem Cell Res ; 48: 101960, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927425

RESUMO

Four disease-specific induced pluripotent stem cell (iPSC) lines were respectively derived from peripheral blood mononuclear cells of two affected individuals in a family affected by familial neurohypophyseal diabetes insipidus carrying the c.314G>C mutation. The expression of pluripotency markers (NANOG, OCT4, and SOX2), maintenance of a normal karyotype, absence of episomal vectors used for iPSC generation, and presence of the original pathogenic mutation were confirmed for each iPSC line. The ability to differentiate into three germ layers was confirmed by a teratoma formation assay. These iPSC lines can help in disease recapitulation in vitro using organoids and elucidation of disease mechanisms.


Assuntos
Diabetes Insípido Neurogênico , Diabetes Mellitus , Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Linhagem Celular , Humanos , Leucócitos Mononucleares , Mutação
6.
Antimicrob Agents Chemother ; 64(12)2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-32958718

RESUMO

Favipiravir is an oral broad-spectrum inhibitor of viral RNA-dependent RNA polymerase that is approved for treatment of influenza in Japan. We conducted a prospective, randomized, open-label, multicenter trial of favipiravir for the treatment of COVID-19 at 25 hospitals across Japan. Eligible patients were adolescents and adults admitted with COVID-19 who were asymptomatic or mildly ill and had an Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1. Patients were randomly assigned at a 1:1 ratio to early or late favipiravir therapy (in the latter case, the same regimen starting on day 6 instead of day 1). The primary endpoint was viral clearance by day 6. The secondary endpoint was change in viral load by day 6. Exploratory endpoints included time to defervescence and resolution of symptoms. Eighty-nine patients were enrolled, of whom 69 were virologically evaluable. Viral clearance occurred within 6 days in 66.7% and 56.1% of the early and late treatment groups (adjusted hazard ratio [aHR], 1.42; 95% confidence interval [95% CI], 0.76 to 2.62). Of 30 patients who had a fever (≥37.5°C) on day 1, times to defervescence were 2.1 days and 3.2 days in the early and late treatment groups (aHR, 1.88; 95% CI, 0.81 to 4.35). During therapy, 84.1% developed transient hyperuricemia. Favipiravir did not significantly improve viral clearance as measured by reverse transcription-PCR (RT-PCR) by day 6 but was associated with numerical reduction in time to defervescence. Neither disease progression nor death occurred in any of the patients in either treatment group during the 28-day participation. (This study has been registered with the Japan Registry of Clinical Trials under number jRCTs041190120.).


Assuntos
Amidas/administração & dosagem , Antivirais/administração & dosagem , Tratamento Farmacológico da COVID-19 , Pirazinas/administração & dosagem , SARS-CoV-2/efeitos dos fármacos , Carga Viral/efeitos dos fármacos , Adolescente , Adulto , Amidas/efeitos adversos , Antivirais/efeitos adversos , Doenças Assintomáticas , COVID-19/fisiopatologia , COVID-19/virologia , Feminino , Hospitalização , Humanos , Hiperuricemia/induzido quimicamente , Hiperuricemia/diagnóstico , Hiperuricemia/fisiopatologia , Japão , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Pirazinas/efeitos adversos , Distribuição Aleatória , SARS-CoV-2/patogenicidade , Prevenção Secundária/organização & administração , Índice de Gravidade de Doença , Tempo para o Tratamento/organização & administração , Resultado do Tratamento
7.
Stem Cell Res ; 46: 101846, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32460232

RESUMO

We generated three disease-specific iPSC lines from a Multiple endocrine neoplasia type 1 (MEN1) patient and three control iPSC lines from an unaffected blood relative of the patient using unutilized lymphoblastoid B cell lines (LCLs) as a cell resource. The expression of pluripotency markers, retaining of normal karyotype of chromosome, absence of episomal vectors used for generating the iPSCs and EBV used for generating LCLs, and the potential to differentiate into three germ layers, were confirmed for each iPSC line. These iPSC lines can be useful for construction of the disease models in vitro, and elucidation of the disease mechanisms.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasia Endócrina Múltipla Tipo 1 , Diferenciação Celular , Linhagem Celular , Humanos , Neoplasia Endócrina Múltipla Tipo 1/genética , Plasmídeos
8.
Sci Rep ; 9(1): 3630, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842516

RESUMO

Cell-processed therapeutic products (CTPs) derived from human pluripotent stem cells (hPSCs) have innovative applications in regenerative medicine. However, undifferentiated hPSCs possess tumorigenic potential; thus, sensitive methods for the detection of residual undifferentiated hPSCs are essential for the clinical use of hPSC-derived CTPs. The detection limit of the methods currently available is 1/105 (0.001%, undifferentiated hPSCs/differentiated cells) or more, which could be insufficient for the detection of residual hPSCs when CTPs contain more than 1 × 105 cells. In this study, we developed a novel approach to overcome this challenge, using adenovirus and adeno-associated virus (AdV and AAV)-based selective cytotoxic vectors. We constructed AdV and AAV vectors that possess a suicide gene, iCaspase 9 (iCasp9), regulated by the CMV promoter, which is dormant in hPSCs, for the selective expression of iCasp9 in differentiated cells. As expected, AdV/CMV-iCasp9 and AAV/CMV-iCasp9 exhibited cytotoxicity in cardiomyocytes but not in human induced pluripotent stem cells (hiPSCs). The vectors also induced apoptosis in hiPSC-derived cardiomyocytes, and the surviving cells exhibited higher levels of hPSC marker expression. These results indicate that the AdV- and AAV-based cytotoxic vectors concentrate cells expressing the undifferentiated cell markers in hiPSC-derived products and are promising biological tools for verifying the quality of CTPs.


Assuntos
Adenoviridae/genética , Diferenciação Celular , Dependovirus/genética , Vetores Genéticos/administração & dosagem , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/patologia , Medicina Regenerativa , Infecções por Adenoviridae/virologia , Vetores Genéticos/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/virologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/virologia , Infecções por Parvoviridae/virologia
9.
Sci Rep ; 9(1): 921, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696909

RESUMO

The ultimate goal of periodontal disease treatment is the reorganization of functional tissue that can regenerate lost periodontal tissue. Regeneration of periodontal tissues is clinically possible by using autogenic transplantation of MSCs. However, autologous MSC transplantation is limited depending on age, systemic disease and tissue quality, thus precluding their clinical application. Therefore, we evaluated the efficacy of allogeneic transplantation of adipose-derived multi-lineage progenitor cells (ADMPC) in a micro-mini pig periodontal defect model. ADMPC were isolated from the greater omentum of micro-mini pigs, and flow cytometry analysis confirmed that the ADMPC expressed MSC markers, including CD44 and CD73. ADMPC exhibited osteogenic, adipogenic and periodontal ligament differentiation capacities in differentiation medium. ADMPC showed high expression of the immune suppressive factors GBP4 and IL1-RA upon treatment with a cytokine cocktail containing interferon-γ, tumor necrosis factor-α and interleukin-6. Allogeneic transplantation of ADMPC in a micro-mini pig periodontal defect model showed significant bone regeneration ability based on bone-morphometric analysis. Moreover, the regeneration ability of ADMPC by allogeneic transplantation was comparable to those of autologous transplantation by histological analysis. These results indicate that ADMPC have immune-modulation capability that can induce periodontal tissue regeneration by allogeneic transplantation.


Assuntos
Tecido Adiposo/citologia , Regeneração Óssea , Regeneração Tecidual Guiada Periodontal , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Biomarcadores , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Citocinas/metabolismo , Imuno-Histoquímica , Imunomodulação , Mediadores da Inflamação/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Leucócitos/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Modelos Biológicos , Osteogênese , Periodonto/diagnóstico por imagem , Periodonto/patologia , Transplante de Células-Tronco/métodos , Células-Tronco/imunologia , Células-Tronco/metabolismo , Suínos , Porco Miniatura , Engenharia Tecidual , Transplante Homólogo , Microtomografia por Raio-X
10.
PLoS One ; 13(10): e0205022, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30286143

RESUMO

Human induced pluripotent stem cells (hiPSCs) represent promising raw materials of human cell-based therapeutic products (hCTPs). As undifferentiated hiPSCs exhibit intrinsic tumorigenicity properties that enable them to form teratomas, hCTPs containing residual undifferentiated hiPSCs may cause tumor formation following transplantation. We first established quantitative and sensitive tumorigenicity testing of hiPSCs dissociated into single cells using NOD/Shi-scid IL2Rγnull (NOG) mice by inhibiting apoptosis of hiPSCs with a Rho kinase inhibitor. To examine different features in tumorigenicity of various hiPSCs, 10 commonly available hiPSC lines were subjected to in vivo tumorigenicity testing. Transplanted hiPSC lines showed remarkable variation in tumor incidence, formation latency, and volumes. Most of the tumors formed were classified as immature teratomas. However, no signs of malignancies, such as carcinoma and sarcoma, were recognized in the tumors. Characteristics associated tumorigenicity of hiPSCs were investigated with microarray analysis, karyotype analysis, and whole exome sequencing. Gene expression profiling and pathway analysis supported different features of hiPSC lines in tumorigenicity. hiPSC lines showed chromosomal abnormalities in some lines and 61-77 variants of cancer-related genes carrying effective nonsynonymous mutations, which were confirmed in the COSMIC databases. In this study, the chromosomal abnormalities and cancer-related gene mutations observed in hiPSC lines did not lead to the malignancy of tumors derived from hiPSCs. Our results suggest that the potential tumorigenicity risk of hCTPs containing residual undifferentiated hiPSCs is dependent on not only amounts of undifferentiated hiPSCs but also features of the cell lines used as raw materials, a finding that should be considered from the perspective of quality of hCTPs used.


Assuntos
Carcinogênese , Células-Tronco Pluripotentes Induzidas/patologia , Carcinogênese/genética , Linhagem Celular , Exoma/genética , Humanos , Cariótipo , Transcriptoma
11.
Curr Clin Pharmacol ; 13(3): 199-208, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29866013

RESUMO

BACKGROUND: Drug development for rare diseases is challenging because it is difficult to obtain relevant data from very few patients. It must be informative to grasp current status of clinical trials for drug development in rare diseases. OBJECTIVE: Clinical trials in rare diseases are to be outlined and compared among the US, EU and Japan. METHOD: ClinicalTrials.gov (NCT, National Clinical Trial), EU Clinical Trials Register (EUCTR) and the Japan Primary Registries Network (JPRN) were analyzed. Clinical trials involving information on rare diseases and drugs were extracted by text-mining, based on the diseases and drugs derived from Orphanet and DrugBank, respectively. RESULTS: In total, 28,526 clinical trials were extracted, which studied 1,535 rare diseases and 1,539 drugs. NCT had the largest number of trials, involving 1,252 diseases and 1,332 drugs. EUCTR and JPRN also had registry-specific diseases (250 and 22, respectively) and drugs (172 and 29, respectively) that should not be missed. Among the 1,535 rare diseases, most diseases were studied in only a limited number of trials; 70% of diseases were studied in fewer than 10 trials, and 28% were studied in only one. Additionally, most studied rare diseases were cancer-related ones. CONCLUSION: This study has revealed the characteristics of the clinical trials in rare diseases among the US, EU and Japan. The number of trials for rare diseases was limited especially for non-cancerrelated ones. This information could contribute to drug development such as drug-repositioning in rare diseases.


Assuntos
Ensaios Clínicos como Assunto/estatística & dados numéricos , Desenvolvimento de Medicamentos/estatística & dados numéricos , Produção de Droga sem Interesse Comercial/estatística & dados numéricos , Doenças Raras/tratamento farmacológico , Desenvolvimento de Medicamentos/tendências , União Europeia , Humanos , Japão , Estados Unidos
12.
Sci Rep ; 7(1): 8163, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811571

RESUMO

Human pluripotent stem cells (hPSCs) are leading candidate raw materials for cell-based therapeutic products (CTPs). In the development of hPSC-derived CTPs, it is imperative to ensure that they do not form tumors after transplantation for safety reasons. Because cellular immortalization is a landmark of malignant transformation and a common feature of cancer cells, we aimed to develop an in vitro assay for detecting immortalized cells in CTPs. We employed retinal pigment epithelial (RPE) cells as a model of hPSC-derived products and identified a gene encoding slow skeletal muscle troponin T (TNNT1) as a novel marker of immortalized RPE cells by comprehensive microarray analysis. TNNT1 mRNA was commonly upregulated in immortalized RPE cells and human induced pluripotent stem cells (hiPSCs), which have self-renewal ability. Additionally, we demonstrated that TNNT1 mRNA expression is higher in several cancer tissues than in normal tissues. Furthermore, stable expression of TNNT1 in ARPE-19 cells affected actin filament organization and enhanced their migration ability. Finally, we established a simple and rapid qRT-PCR assay targeting TNNT1 transcripts that detected as low as 3% of ARPE-19 cells contained in normal primary RPE cells. Purified hiPSC-derived RPE cells showed TNNT1 expression levels below the detection limit determined with primary RPE cells. Our qRT-PCR method is expected to greatly contribute to process validation and quality control of CTPs.


Assuntos
Células Epiteliais/metabolismo , Expressão Gênica , Epitélio Pigmentado da Retina/metabolismo , Troponina T/genética , Actinas/metabolismo , Biomarcadores , Ciclo Celular/genética , Linhagem Celular Transformada , Movimento Celular/genética , Perfilação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Multimerização Proteica
14.
Stem Cells ; 34(5): 1251-62, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26824798

RESUMO

To develop cell therapies for ischemic diseases, endothelial progenitor cells (EPCs) have been expected to play a pivotal role in vascular regeneration. It is desirable to use a molecular marker that is related to the function of the cells. Here, a quantitative polymerase chain reaction array revealed that early EPCs derived from CD133(+) cells exhibited significant expression of MMP-9. Some populations of early EPCs expressed MMP-9 on the cell surface and others did not. We also attempted to separate the proangiogenic fraction from early EPCs derived from CD133(+) cells using a functional cell surface marker, and we then analyzed the MMP-9(+) and MMP-9(-) cell fractions. The MMP-9(+) cells not only revealed higher invasion ability but also produced a high amount of IL-8. Moreover, the stimulative effect of MMP-9(+) cells on angiogenesis in vitro and in vivo was prohibited by anti-IL-8 antibody. These data indicate that MMP-9 is one of the useful cell surface markers for the separation of angiogenic cells. Our treatment of early EPCs with hyaluronidase caused not only a downregulation of cell-surface MMP-9 but also a decrease in invasion ability, indicating that membrane-bound MMP-9, which is one of the useful markers for early EPCs, plays an important role in angiogenesis. Stem Cells 2016;34:1251-1262.


Assuntos
Antígeno AC133/metabolismo , Membrana Celular/enzimologia , Separação Celular , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neovascularização Fisiológica , Animais , Biomarcadores/metabolismo , Fracionamento Celular , Células Progenitoras Endoteliais/efeitos dos fármacos , Citometria de Fluxo , Perfilação da Expressão Gênica , Membro Posterior/irrigação sanguínea , Membro Posterior/patologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hialuronoglucosaminidase/farmacologia , Interleucina-8/metabolismo , Isquemia/patologia , Metaloproteinase 2 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
Regen Ther ; 5: 49-54, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31245501

RESUMO

In human cell-processed therapeutic products (hCTPs) for clinical application, tumorigenic cellular impurities in the manufacturing process are a major concern. Because cellular immortalization is one of the prerequisite steps in tumorigenesis, we tested whether cell growth analysis can be employed to check for immortalized (and potentially tumorigenic) cellular impurities in hCTPs. We monitored the growth of human bone marrow-derived mesenchymal stem cells (BMSCs) mixed with HeLa cells at a ratio of 1/106 or more and compared their growth rates with that of BMSCs alone. The cell growth analysis detected a significant increase in the growth rate of the BMSCs spiked with 0.0001% HeLa within 30 days at a probability of 47%. When human adipose-derived stem cells (ADSCs) were spiked with ASC52telo cells, a human telomerase reverse transcriptase (hTERT)-immortalized adipose-derived mesenchymal stem cell line, at a ratio of 0.001% or more, their growth rates were significantly increased within 15 passages, compared with that of ADSCs alone. These results indicate that cell growth analysis for the detection of immortalized cellular impurities in human somatic stem cells is simple and can be useful for the quality assessment of hCTPs in the manufacturing process.

16.
Stem Cell Res Ther ; 6: 243, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26652649

RESUMO

INTRODUCTION: For expansion of human mesenchymal stem cells (MSCs), autologous human serum is safer than fetal bovine serum in clinical situations. One of the problems with the use of autologous human serum is that its proliferative effect on MSCs varies widely between donors. The threefold goals of this study were: (1) to demonstrate an improved method for preparing human serum; (2) to identify growth factors predictive of proliferative potential; and (3) to identify a cytokine to promote MSC proliferation in human serum. METHODS: Fresh blood was collected using a closed bag system containing glass beads. The bag was shaken at 20 °C for 30 minutes for rapid preparation, or kept stationary at 4 °C for 24 hours for slow preparation. Passage 0 synovial MSCs derived from four donors were cultured with 10 % conventional rapid preparation serum or modified slow preparation serum from four different donors. To perform the colony-forming unit assay, synovial MSCs were cultured in these serums. The protein expression profile in serum was analyzed using cytokine array. The candidate proteins were speculated from the correlation between the colony-forming ability and protein expression. As an evaluation of the candidate proteins, proliferation ability, surface marker phenotype and differentiation capability of synovial MSCs were examined. RESULTS: Compared with rapid preparation serum, slow preparation serum resulted in a significantly higher total colony number and twofold higher expression levels of nine proteins (angiopoietin-1, BDNF, EGF, ENA-78, IGFBP-2, platelet-derived growth factor (PDGF)-AA, PDGF-AB/BB, RANTES and TfR). Colony number was positively correlated with PDGF-AA/AB concentrations. Exogenous PDGF-AA significantly promoted proliferation of synovial MSCs, whereas PDGF receptor (PDGFR) inhibitor decreased it. Addition of PDGFs or PDGFR inhibitor did not affect surface epitopes of synovial MSCs. Pretreatment with PDGFs or PDGFR inhibitor did not affect chondrogenic, adipogenic, or calcification potentials of synovial MSCs. CONCLUSION: Slow preparation serum contained higher concentrations of PDGF-AA/AB and increased the colony formation number of synovial MSCs. PDGF-AA/AB were indicators of the proliferative potential of human serum. Exogenous PDGF-AA increased proliferation of synovial MSCs without alteration of surface epitopes and differentiation potentials.


Assuntos
Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Membrana Sinovial/citologia , Membrana Sinovial/metabolismo , Adulto , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Meios de Cultura/metabolismo , Citocinas/sangue , Humanos , Técnicas In Vitro , Masculino
17.
Biologicals ; 43(5): 283-97, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26315651

RESUMO

The regulation of human cell therapy products is a key factor in their development and use to treat human diseases. In that regard, there is a recognized need for a global effort to develop a set of common principles that may serve to facilitate a convergence of regulatory approaches to ensure the smooth and efficient evaluation of products. This conference, with experts from regulatory agencies, industry, and academia, contributed to the process of developing such a document. Elements that could form a minimum consensus package of requirements for evaluating human cell therapy products were the overall focus of the conference. The important regulatory considerations that are unique to human cell therapy products were highlighted. Sessions addressed specific points that are different from those of traditional biological/biotechnological protein products. Panel discussions complemented the presentations. The conference concluded that most of the current regulatory framework is appropriate for cell therapy, but there are some areas where the application of the requirements for traditional biologicals is inappropriate. In addition, it was agreed that there is a need for international consensus on core regulatory elements, and that one of the major international organizations should take the lead in formulating such a consensus document.


Assuntos
Biotecnologia/legislação & jurisprudência , Terapia Baseada em Transplante de Células e Tecidos , Produtos Biológicos , Humanos
18.
Biochem Biophys Res Commun ; 464(1): 299-305, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26116772

RESUMO

Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration.


Assuntos
Tecido Adiposo/citologia , Meios de Cultivo Condicionados/farmacologia , Cemento Dentário/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Ligamento Periodontal/efeitos dos fármacos , Células-Tronco/citologia , Tecido Adiposo/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Células Cultivadas , Cemento Dentário/citologia , Cemento Dentário/metabolismo , Regulação da Expressão Gênica , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/antagonistas & inibidores , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
J Cell Physiol ; 230(11): 2763-75, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25820539

RESUMO

Since the introduction of angiogenic cell therapy using early endothelial progenitor cells (EPCs), myeloid angiogenic cells (MACs) have been expected to be useful in treating ischemic diseases. In order to elucidate the angiogenic properties of MACs/EPCs, we clarified the characteristics of MACs as compared to M2 macrophages (Mϕs). Comparison of the gene expression profiles of MACs and late EPCs revealed that MACs expressed greater amounts of metalloproteinase (MMP)-9. It should be noted that the profile of MMP-2/9 expression on the cell surface of MACs was similar to that of M2 Mϕs, and that cell surface MMP-2/9 might be an active form based on molecular size. In addition, the invasion of MACs was prohibited not only by MMP-2/9 inhibitor, but also by the hyaluronidase treatment that caused the down-regulation of MMP-9 on the cell surface of MACs and inhibited their invasion activity. These results indicate that cell surface MMP-2/9 plays an important role in the high invasion ability of MACs. The conditioned medium of both MACs and M2 Mϕs stimulated tube formation of endothelial cells in vitro. MACs caused an increase in vessel formation in in vivo models through the production of IL-8. We propose that the role of MACs with cell surfaces expressing MMP-2/9 is rapidly invading ischemic tissue.


Assuntos
Células Progenitoras Endoteliais/metabolismo , Metaloproteinase 9 da Matriz/biossíntese , Células Mieloides/metabolismo , Neovascularização Fisiológica , Meios de Cultivo Condicionados , Células Progenitoras Endoteliais/citologia , Humanos , Interleucina-8/biossíntese , Macrófagos/citologia , Macrófagos/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/administração & dosagem , Células Mieloides/citologia , Isquemia Miocárdica/patologia , Isquemia Miocárdica/terapia , Neovascularização Patológica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Regen Ther ; 2: 81-94, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31245462

RESUMO

As a series of endeavors to establish suitable measures for the sound development of regenerative medicine using human stem cell-based products, we studied scientific principles, concepts, and basic technical elements to ensure the quality and safety of therapeutic products derived from autologous human iPS cells or iPS cell-like cells, taking into consideration scientific and technological advances, ethics, regulatory rationale, and international trends in human stem cell-derived products. This led to the development of the Japanese official Notification No. 0907-4, "Guideline on Ensuring the Quality and Safety of Pharmaceuticals and Medical Devices Derived from the Processing of Autologous Human Induced Pluripotent Stem(-Like) Cells," issued by Pharmaceuticals and Food Safety Bureau, Ministry of Health, Labour and Welfare of Japan, on September 7, 2012. The present paper addresses various aspects of products derived from autologous human iPS cells (or iPS cell-like cells), in addition to similar points to consider that are described previously for autologous human stem cell-based products. Major additional points include (1) possible existence of autologous human iPS cell-like cells that are different from iPS cells in terms of specific biological features; (2) the use of autologous human iPS(-like) cells as appropriate starting materials for regenerative medicine, where necessary and significant; (3) establishment of autologous human iPS(-like) cell lines and their characterization; (4) cell banking and/or possible establishment of intermediate cell lines derived from autologous human iPS(-like) cells at appropriate stage(s) of a manufacturing process, if necessary; and (5) concerns about the presence of undifferentiated cells in the final product; such cells may cause ectopic tissue formation and/or tumorigenesis. The ultimate goal of this guidance is to provide suitable medical opportunities as soon as possible to the patients with severe diseases that are difficult to treat with conventional modalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA