Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 6314, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298956

RESUMO

Blood and lymphatic vessels structurally bear a strong resemblance but never share a lumen, thus maintaining their distinct functions. Although lymphatic vessels initially arise from embryonic veins, the molecular mechanism that maintains separation of these two systems has not been elucidated. Here, we show that genetic deficiency of Folliculin, a tumor suppressor, leads to misconnection of blood and lymphatic vessels in mice and humans. Absence of Folliculin results in the appearance of lymphatic-biased venous endothelial cells caused by ectopic expression of Prox1, a master transcription factor for lymphatic specification. Mechanistically, this phenotype is ascribed to nuclear translocation of the basic helix-loop-helix transcription factor Transcription Factor E3 (TFE3), binding to a regulatory element of Prox1, thereby enhancing its venous expression. Overall, these data demonstrate that Folliculin acts as a gatekeeper that maintains separation of blood and lymphatic vessels by limiting the plasticity of committed endothelial cells.


Assuntos
Plasticidade Celular , Vasos Linfáticos/embriologia , Proteínas Proto-Oncogênicas/deficiência , Proteínas Supressoras de Tumor/deficiência , Veias/embriologia , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Núcleo Celular/metabolismo , Embrião de Mamíferos , Células Endoteliais/metabolismo , Endotélio Linfático/citologia , Endotélio Linfático/embriologia , Endotélio Vascular/citologia , Endotélio Vascular/embriologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Vasos Linfáticos/citologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Veias/citologia
2.
Dev Biol ; 452(2): 134-143, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31112709

RESUMO

The origin of the mammalian lymphatic vasculature has been studied for more than a century; however, details regarding organ-specific lymphatic development remain unknown. A recent study reported that cardiac lymphatic endothelial cells (LECs) stem from venous and non-venous origins in mice. Here, we identified Isl1-expressing progenitors as a potential non-venous origin of cardiac LECs. Genetic lineage tracing with Isl1-Cre reporter mice suggested a possible contribution from the Isl1-expressing pharyngeal mesoderm constituting the second heart field to lymphatic vessels around the cardiac outflow tract as well as to those in the facial skin and the lymph sac. Isl1+ lineage-specific deletion of Prox1 resulted in disrupted LYVE1+ vessel structures, indicating a Prox1-dependent mechanism in this contribution. Tracing back to earlier embryonic stages revealed the presence of VEGFR3+ and/or Prox1+ cells that overlapped with the Isl1+ pharyngeal core mesoderm. These data may provide insights into the developmental basis of heart diseases involving lymphatic vasculature and improve our understanding of organ-based lymphangiogenesis.


Assuntos
Linhagem da Célula , Coração/embriologia , Proteínas com Homeodomínio LIM/metabolismo , Linfangiogênese , Vasos Linfáticos/citologia , Vasos Linfáticos/embriologia , Fatores de Transcrição/metabolismo , Animais , Células Endoteliais/metabolismo , Proteínas de Homeodomínio/metabolismo , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Faringe/citologia , Células-Tronco/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
PLoS One ; 11(7): e0158236, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27367050

RESUMO

The embryonic brain is one of the tissues most vulnerable to ionizing radiation. In this study, we showed that ionizing radiation induces apoptosis in the neural progenitors of the mouse cerebral cortex, and that the surviving progenitor cells subsequently develop a considerable amount of supernumerary centrosomes. When mouse embryos at Day 13.5 were exposed to γ-rays, brains sizes were reduced markedly in a dose-dependent manner, and these size reductions persisted until birth. Immunostaining with caspase-3 antibodies showed that apoptosis occurred in 35% and 40% of neural progenitor cells at 4 h after exposure to 1 and 2 Gy, respectively, and this was accompanied by a disruption of the apical layer in which mitotic spindles were positioned in unirradiated mice. At 24 h after 1 Gy irradiation, the apoptotic cells were completely eliminated and proliferation was restored to a level similar to that of unirradiated cells, but numerous spindles were localized outside the apical layer. Similarly, abnormal cytokinesis, which included multipolar division and centrosome clustering, was observed in 19% and 24% of the surviving neural progenitor cells at 48 h after irradiation with 1 and 2 Gy, respectively. Because these cytokinesis aberrations derived from excess centrosomes result in growth delay and mitotic catastrophe-mediated cell elimination, our findings suggest that, in addition to apoptosis at an early stage of radiation exposure, radiation-induced centrosome overduplication could contribute to the depletion of neural progenitors and thereby lead to microcephaly.


Assuntos
Centrossomo/patologia , Centrossomo/efeitos da radiação , Microcefalia/patologia , Células-Tronco Neurais/patologia , Células-Tronco Neurais/efeitos da radiação , Lesões Experimentais por Radiação/patologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos da radiação , Proliferação de Células/efeitos da radiação , Córtex Cerebral/embriologia , Córtex Cerebral/efeitos da radiação , Citocinese/efeitos da radiação , Feminino , Camundongos , Gravidez
4.
Nat Commun ; 7: 11349, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27094546

RESUMO

During cerebral development, many types of neurons are sequentially generated by self-renewing progenitor cells called apical progenitors (APs). Temporal changes in AP identity are thought to be responsible for neuronal diversity; however, the mechanisms underlying such changes remain largely unknown. Here we perform single-cell transcriptome analysis of individual progenitors at different developmental stages, and identify a subset of genes whose expression changes over time but is independent of differentiation status. Surprisingly, the pattern of changes in the expression of such temporal-axis genes in APs is unaffected by cell-cycle arrest. Consistent with this, transient cell-cycle arrest of APs in vivo does not prevent descendant neurons from acquiring their correct laminar fates. Analysis of cultured APs reveals that transitions in AP gene expression are driven by both cell-intrinsic and -extrinsic mechanisms. These results suggest that the timing mechanisms controlling AP temporal identity function independently of cell-cycle progression and Notch activation mode.


Assuntos
Linhagem da Célula/genética , Córtex Cerebral/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Animais , Pontos de Checagem do Ciclo Celular/genética , Diferenciação Celular , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Embrião de Mamíferos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Nucleosídeo NM23 Difosfato Quinases/genética , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Células-Tronco Neurais/citologia , Neurônios/citologia , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transdução de Sinais , Análise de Célula Única , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fatores de Tempo
5.
PLoS One ; 10(12): e0145334, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26709696

RESUMO

Central nervous system injury induces a regenerative response in ensheathing glial cells comprising cell proliferation, spontaneous axonal remyelination, and limited functional recovery, but the molecular mechanisms are not fully understood. In Drosophila, this involves the genes prospero and Notch controlling the balance between glial proliferation and differentiation, and manipulating their levels in glia can switch the response to injury from prevention to promotion of repair. In the mouse, Notch1 maintains NG2 oligodendrocyte progenitor cells (OPCs) in a progenitor state, but what factor may enable oligodendrocyte (OL) differentiation and functional remyelination is not understood. Here, we asked whether the mammalian homologue of prospero, Prox1, is involved. Our data show that Prox1 is distributed in NG2+ OPCs and in OLs in primary cultured cells, and in the mouse spinal cord in vivo. siRNA prox1 knockdown in primary OPCs increased cell proliferation, increased NG2+ OPC cell number and decreased CC1+ OL number. Prox1 conditional knockout in the OL cell lineage in mice increased NG2+ OPC cell number, and decreased CC1+ OL number. Lysolecithin-induced demyelination injury caused a reduction in CC1+ OLs in homozygous Prox1-/- conditional knockout mice compared to controls. Remarkably, Prox1-/- conditional knockout mice had smaller lesions than controls. Altogether, these data show that Prox1 is required to inhibit OPC proliferation and for OL differentiation, and could be a relevant component of the regenerative glial response. Therapeutic uses of glia and stem cells to promote regeneration and repair after central nervous system injury would benefit from manipulating Prox1.


Assuntos
Diferenciação Celular/genética , Proliferação de Células/genética , Proteínas de Homeodomínio/genética , Oligodendroglia/citologia , Receptor Notch1/genética , Proteínas Supressoras de Tumor/genética , Animais , Proteínas Relacionadas à Autofagia , Células Cultivadas , Sistema Nervoso Central/citologia , Sistema Nervoso Central/lesões , Sistema Nervoso Central/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética
6.
J Neurosci ; 35(37): 12869-89, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26377473

RESUMO

Neurogliaform (RELN+) and bipolar (VIP+) GABAergic interneurons of the mammalian cerebral cortex provide critical inhibition locally within the superficial layers. While these subtypes are known to originate from the embryonic caudal ganglionic eminence (CGE), the specific genetic programs that direct their positioning, maturation, and integration into the cortical network have not been elucidated. Here, we report that in mice expression of the transcription factor Prox1 is selectively maintained in postmitotic CGE-derived cortical interneuron precursors and that loss of Prox1 impairs the integration of these cells into superficial layers. Moreover, Prox1 differentially regulates the postnatal maturation of each specific subtype originating from the CGE (RELN, Calb2/VIP, and VIP). Interestingly, Prox1 promotes the maturation of CGE-derived interneuron subtypes through intrinsic differentiation programs that operate in tandem with extrinsically driven neuronal activity-dependent pathways. Thus Prox1 represents the first identified transcription factor specifically required for the embryonic and postnatal acquisition of CGE-derived cortical interneuron properties. SIGNIFICANCE STATEMENT: Despite the recognition that 30% of GABAergic cortical interneurons originate from the caudal ganglionic eminence (CGE), to date, a specific transcriptional program that selectively regulates the development of these populations has not yet been identified. Moreover, while CGE-derived interneurons display unique patterns of tangential and radial migration and preferentially populate the superficial layers of the cortex, identification of a molecular program that controls these events is lacking.Here, we demonstrate that the homeodomain transcription factor Prox1 is expressed in postmitotic CGE-derived cortical interneuron precursors and is maintained into adulthood. We found that Prox1 function is differentially required during both embryonic and postnatal stages of development to direct the migration, differentiation, circuit integration, and maintenance programs within distinct subtypes of CGE-derived interneurons.


Assuntos
Córtex Cerebral/citologia , Neurônios GABAérgicos/citologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/fisiologia , Interneurônios/citologia , Proteínas do Tecido Nervoso/fisiologia , Neurogênese/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Biomarcadores , Calbindina 2/análise , Moléculas de Adesão Celular Neuronais/análise , Linhagem da Célula , Movimento Celular , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/patologia , Proteínas da Matriz Extracelular/análise , Neurônios GABAérgicos/metabolismo , Perfilação da Expressão Gênica , Interneurônios/classificação , Interneurônios/metabolismo , Camundongos , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Proteína Reelina , Serina Endopeptidases/análise , Proteínas Supressoras de Tumor/deficiência , Peptídeo Intestinal Vasoativo/análise
7.
Nature ; 522(7554): 62-7, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25992544

RESUMO

The lymphatic vasculature is a blind-ended network crucial for tissue-fluid homeostasis, immune surveillance and lipid absorption from the gut. Recent evidence has proposed an entirely venous-derived mammalian lymphatic system. By contrast, here we show that cardiac lymphatic vessels in mice have a heterogeneous cellular origin, whereby formation of at least part of the cardiac lymphatic network is independent of sprouting from veins. Multiple Cre­lox-based lineage tracing revealed a potential contribution from the putative haemogenic endothelium during development, and discrete lymphatic endothelial progenitor populations were confirmed by conditional knockout of Prox1 in Tie2+ and Vav1+ compartments. In the adult heart, myocardial infarction promoted a significant lymphangiogenic response, which was augmented by treatment with VEGF-C, resulting in improved cardiac function. These data prompt the re-evaluation of a century-long debate on the origin of lymphatic vessels and suggest that lymphangiogenesis may represent a therapeutic target to promote cardiac repair following injury.


Assuntos
Linfangiogênese , Vasos Linfáticos/citologia , Vasos Linfáticos/lesões , Miocárdio/citologia , Animais , Linhagem da Célula , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Coração/fisiologia , Coração/fisiopatologia , Proteínas de Homeodomínio/metabolismo , Vasos Linfáticos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor TIE-2/metabolismo , Análise Espaço-Temporal , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Veias/citologia , Saco Vitelino/citologia
8.
Brain Res ; 1620: 139-52, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25988834

RESUMO

Studies of human brain malformations, such as lissencephaly and double cortex, have revealed the importance of neuronal migration during cortical development. Afadin, a membrane scaffolding protein, regulates the formation of adherens junctions (AJs) and cell migration to form and maintain tissue structures. Here, we report that mice with dorsal telencephalon-specific ablation of afadin gene exhibited defects similar to human double cortex, in which the heterotopic cortex was located underneath the normotopic cortex. The normotopic cortex of the mutant mice was arranged in the pattern similar to the cortex of the control mice, while the heterotopic cortex was disorganized. As seen in human patients, double cortex in the mutant mice was formed by impaired neuronal migration during cortical development. Genetic ablation of afadin in the embryonic cerebral cortex disrupted AJs of radial glial cells, likely resulting in the retraction of the apical endfeet from the ventricular surface and the dispersion of radial glial cells from the ventricular zone to the subventricular and intermediate zones. These results indicate that afadin is required for the maintenance of AJs of radial glial cells and that the disruption of AJs might cause an abnormal radial scaffold for neuronal migration. In contrast, the proliferation or differentiation of radial glial cells was not significantly affected. Taken together, these findings indicate that afadin is required for the maintenance of the radial glial scaffold for neuronal migration and that the genetic ablation of afadin leads to the formation of double cortex.


Assuntos
Movimento Celular/fisiologia , Córtex Cerebral/embriologia , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/fisiopatologia , Cinesinas/deficiência , Miosinas/deficiência , Neuroglia/fisiologia , Neurônios/fisiologia , Animais , Animais Recém-Nascidos , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/patologia , Modelos Animais de Doenças , Imunofluorescência , Cinesinas/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Miosinas/genética , Neuroglia/patologia , Neurônios/patologia
9.
Development ; 139(16): 3051-62, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22791897

RESUMO

The brain is composed of diverse types of neurons that fulfill distinct roles in neuronal circuits, as manifested by the hippocampus, where pyramidal neurons and granule cells constitute functionally distinct domains: cornu ammonis (CA) and dentate gyrus (DG), respectively. Little is known about how these two types of neuron differentiate during hippocampal development, although a set of transcription factors that is expressed in progenitor cells is known to be required for the survival of granule cells. Here, we demonstrate in mice that Prox1, a transcription factor constitutively expressed in the granule cell lineage, postmitotically functions to specify DG granule cell identity. Postmitotic elimination of Prox1 caused immature DG neurons to lose the granule cell identity and in turn terminally differentiate into the pyramidal cell type manifesting CA3 neuronal identity. By contrast, Prox1 overexpression caused opposing effects on presumptive hippocampal pyramidal cells. These results indicate that the immature DG cell has the potential to become a granule cell or a pyramidal cell, and Prox1 defines the granule cell identity. This bi-potency is lost in mature DG cells, although Prox1 is still required for correct gene expression in DG granule cells. Thus, our data indicate that Prox1 acts as a postmitotic cell fate determinant for DG granule cells over the CA3 pyramidal cell fate and is crucial for maintenance of the granule cell identity throughout the life.


Assuntos
Região CA3 Hipocampal/metabolismo , Giro Denteado/citologia , Giro Denteado/metabolismo , Proteínas de Homeodomínio/metabolismo , Células Piramidais/citologia , Células Piramidais/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/crescimento & desenvolvimento , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem da Célula/genética , Linhagem da Célula/fisiologia , Giro Denteado/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mitose , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética
10.
Dev Cell ; 22(1): 79-91, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22178499

RESUMO

During development, directional cell division is a major mechanism for establishing the orientation of tissue growth. Drosophila neuroblasts undergo asymmetric divisions perpendicular to the overlying epithelium to produce descendant neurons on the opposite side, thereby orienting initial neural tissue growth. However, the mechanism remains elusive. We provide genetic evidence that extrinsic GPCR signaling determines the orientation of cortical polarity underlying asymmetric divisions of neuroblasts relative to the epithelium. The GPCR Tre1 activates the G protein oα subunit in neuroblasts by interacting with the epithelium to recruit Pins, which regulates spindle orientation. Because Pins associates with the Par-complex via Inscuteable, Tre1 consequently recruits the polarity complex to orthogonally orient the polarity axis to the epithelium. Given the universal role of the Par complex in cellular polarization, we propose that the GPCR-Pins system is a comprehensive mechanism controlling tissue polarity by orienting polarized stem cells and their divisions.


Assuntos
Divisão Celular/fisiologia , Polaridade Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Células Epiteliais/citologia , Neurônios/citologia , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/citologia , Animais , Western Blotting , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Células Epiteliais/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Técnicas Imunoenzimáticas , Imunoprecipitação , Peptidilprolil Isomerase de Interação com NIMA , Neurônios/metabolismo , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Fuso Acromático , Células-Tronco/metabolismo
11.
Dev Cell ; 21(3): 520-33, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21920316

RESUMO

Drosophila neural stem cells, larval brain neuroblasts (NBs), align their mitotic spindles along the apical/basal axis during asymmetric cell division (ACD) to maintain the balance of self-renewal and differentiation. Here, we identified a protein complex composed of the tumor suppressor anastral spindle 2 (Ana2), a dynein light-chain protein Cut up (Ctp), and Mushroom body defect (Mud), which regulates mitotic spindle orientation. We isolated two ana2 alleles that displayed spindle misorientation and NB overgrowth phenotypes in larval brains. The centriolar protein Ana2 anchors Ctp to centrioles during ACD. The centriolar localization of Ctp is important for spindle orientation. Ana2 and Ctp localize Mud to the centrosomes and cell cortex and facilitate/maintain the association of Mud with Pins at the apical cortex. Our findings reveal that the centrosomal proteins Ana2 and Ctp regulate Mud function to orient the mitotic spindle during NB asymmetric division.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Dineínas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Fuso Acromático/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Divisão Celular , Centríolos/metabolismo , Centrossomo/metabolismo , Proteínas de Drosophila/genética , Dineínas/genética , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Larva/metabolismo , Proteínas do Tecido Nervoso/genética , Ligação Proteica/genética
12.
Dev Biol ; 347(1): 9-23, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20599889

RESUMO

Asymmetric cell division generates two daughter cells of differential gene expression and/or cell shape. Drosophila neuroblasts undergo typical asymmetric divisions with regard to both features; this is achieved by asymmetric segregation of cell fate determinants (such as Prospero) and also by asymmetric spindle formation. The loss of genes involved in these individual asymmetric processes has revealed the roles of each asymmetric feature in neurogenesis, yet little is known about the fate of the neuroblast progeny when asymmetric processes are blocked and the cells divide symmetrically. We genetically created such neuroblasts, and found that in embryos, they were initially mitotic and then gradually differentiated into neurons, frequently forming a clone of cells homogeneous in temporal identity. By contrast, larval neuroblasts with the same genotype continued to proliferate without differentiation. Our results indicate that asymmetric divisions govern lineage length and progeny fate, consequently generating neural diversity, while the progeny fate of symmetrically dividing neuroblasts depends on developmental stages, presumably reflecting differential activities of Prospero in the nucleus.


Assuntos
Divisão Celular , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Desenvolvimento Embrionário , Neurônios/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular , Proliferação de Células , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos/genética , Larva/citologia , Larva/crescimento & desenvolvimento , Modelos Biológicos , Proteínas Mutantes/metabolismo , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Células-Tronco/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
13.
J Cell Sci ; 122(Pt 18): 3242-9, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19690050

RESUMO

Drosophila neural stem cells or neuroblasts undergo typical asymmetric cell division. An evolutionally conserved protein complex, comprising atypical protein kinase C (aPKC), Bazooka (Par-3) and Par-6, organizes cell polarity to direct these asymmetric divisions. Aurora-A (AurA) is a key molecule that links the divisions to the cell cycle. Upon its activation in metaphase, AurA phosphorylates Par-6 and activates aPKC signaling, triggering the asymmetric organization of neuroblasts. Little is known, however, about how such a positive regulatory cue is counteracted to coordinate aPKC signaling with other cellular processes. During a mutational screen using the Drosophila compound eye, we identified microtubule star (mts), which encodes a catalytic subunit of protein phosphatase 2A (PP2A), as a negative regulator for aPKC signaling. Impairment of mts function causes defects in neuroblast divisions, as observed in lethal (2) giant larvae (lgl) mutants. mts genetically interacts with par-6 and lgl in a cooperative manner in asymmetric neuroblast division. Furthermore, Mts tightly associates with Par-6 and dephosphorylates AurA-phosphorylated Par-6. Our genetic and biochemical evidence indicates that PP2A suppresses aPKC signaling by promoting Par-6 dephosphorylation in neuroblasts, which uncovers a novel balancing mechanism for aPKC signaling in the regulation of asymmetric cell division.


Assuntos
Divisão Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Neurônios/citologia , Proteína Quinase C/metabolismo , Transdução de Sinais , Animais , Proteínas de Ciclo Celular/metabolismo , Polaridade Celular , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/enzimologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Genes de Insetos , Modelos Biológicos , Neurônios/enzimologia , Folículo Ovariano/citologia , Fenótipo , Fosforilação , Ligação Proteica , Proteína Fosfatase 2/metabolismo , Transporte Proteico , Proteínas Supressoras de Tumor/metabolismo
14.
Biochem Biophys Res Commun ; 366(1): 212-8, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18054329

RESUMO

Drosophila neuroblasts provide an excellent model for asymmetric cell divisions, where cell-fate determinants such as Miranda localize at the basal cortex and segregate to one daughter cell. Mechanisms underlying this process, however, remain elusive. We found that Mo25 and the GC kinase Fray act in this regulation. mo25 and fray mutants show an indistinguishable defect in Miranda localization. On the other hand, Drosophila Mo25 interacts with the tumor suppressor kinase Lkb1 in vivo, as have shown in mammals. Overexpression of Lkb1, which accumulates in the cell cortex, drastically relocalizes both Mo25 and Fray from the cytoplasm to the cortex, causing the same phenotype as mo25-mutant neuroblasts. Recovery from this defect caused by Lkb1 overexpression requires simultaneous overexpression of Mo25 and Fray. We suggest from those results that Mo25 and Fray operate together or in the same pathway in Drosophila asymmetric processes, and that their function counterbalances Lkb1.


Assuntos
Padronização Corporal/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Divisão Celular/fisiologia , Células Cultivadas
15.
Dev Biol ; 312(1): 147-56, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17950268

RESUMO

Segmentation plays crucial roles during morphogenesis. Drosophila legs are divided into segments along the proximal-distal axis by flexible structures called joints. Notch signaling is necessary and sufficient to promote leg growth and joint formation, and is activated in distal cells of each segment in everting prepupal leg discs. The homeobox gene defective proventriculus (dve) is expressed in regions both proximal and distal to the intersegmental folds at 4 h after puparium formation (APF). Dve-expressing region partly overlaps with the Notch-activated region, and they become a complementary pattern at 6 h APF. Interestingly, dve mutant legs resulted in extra joint formation at the center of each tarsal segment, and the forced expression of dve caused a jointless phenotype. We present evidence that Dve suppresses the potential joint-forming activity, and that Notch signaling represses Dve expression to form joints.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Extremidades/embriologia , Proteínas de Homeodomínio/metabolismo , Articulações/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Polaridade Celular , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Receptores ErbB/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Articulações/citologia , Articulações/embriologia , Modelos Biológicos , Mutação/genética , Fenótipo , Fatores de Tempo
16.
Nat Cell Biol ; 8(6): 586-93, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16648846

RESUMO

The orientation of the mitotic spindle relative to the cell axis determines whether polarized cells undergo symmetric or asymmetric divisions. Drosophila epithelial cells and neuroblasts provide an ideal pair of cells to study the regulatory mechanisms involved. Epithelial cells divide symmetrically, perpendicular to the apical-basal axis. In the asymmetric divisions of neuroblasts, by contrast, the spindle reorients parallel to that axis, leading to the unequal distribution of cell-fate determinants to one daughter cell. Receptor-independent G-protein signalling involving the GoLoco protein Pins is essential for spindle orientation in both cell types. Here, we identify Mushroom body defect (Mud) as a downstream effector in this pathway. Mud directly associates and colocalizes with Pins at the cell cortex overlying the spindle pole(s) in both neuroblasts and epithelial cells. The cortical Mud protein is essential for proper spindle orientation in the two different division modes. Moreover, Mud localizes to centrosomes during mitosis independently of Pins to regulate centrosomal organization. We propose that Drosophila Mud, vertebrate NuMA and Caenorhabditis elegans Lin-5 (refs 5, 6) have conserved roles in the mechanism by which G-proteins regulate the mitotic spindle.


Assuntos
Centrossomo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Fuso Acromático , Animais , Proteínas de Ciclo Celular , Polaridade Celular , Drosophila , Células Epiteliais/citologia , Proteínas de Ligação ao GTP/fisiologia , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Ligação Proteica
17.
Biochem Biophys Res Commun ; 311(2): 473-7, 2003 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-14592438

RESUMO

A homeobox gene, defective proventriculus (dve), is expressed in various tissues including the ventral ectoderm and midgut. Here, we show the expression pattern of dve in the ventral ectoderm, in which dve expression is induced by Spitz, a ligand for Drosophila epidermal growth factor receptor (EGFR). In spitz mutants, dve expression is only lost in the ventral ectoderm and overexpression of Spitz induces ectopic dve activation in the ventral ectoderm. Dve expression in the middle midgut depends on Decapentaplegic (Dpp) signaling, while expression of a dominant-negative form of Drosophila EGFR (DER(DN)) also causes a marked decrease in dve expression in the middle midgut. Furthermore, heterozygous mutation of thick veins (tkv), a Dpp receptor, strongly enhances the effect of DER(DN). These results indicate that EGFR signaling is crucial for dve expression in the ventral ectoderm and is required in the middle midgut where it cooperates with Dpp signaling.


Assuntos
Proteínas de Drosophila , Drosophila/embriologia , Drosophila/metabolismo , Ectoderma/metabolismo , Endoderma/metabolismo , Fator de Crescimento Epidérmico , Receptores ErbB/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/metabolismo , Animais , Drosophila/genética , Receptores ErbB/genética , Proteínas de Homeodomínio/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Distribuição Tecidual
18.
Dev Biol ; 249(1): 44-56, 2002 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12217317

RESUMO

Pattern formation during animal development is often induced by extracellular signaling molecules, known as morphogens, which are secreted from localized sources. During wing development in Drosophila, Wingless (Wg) is activated by Notch signaling along the dorsal-ventral boundary of the wing imaginal disc and acts as a morphogen to organize gene expression and cell growth. Expression of wg is restricted to a narrow stripe by Wg itself, repressing its own expression in adjacent cells. This refinement of wg expression is essential for specification of the wing margin. Here, we show that a homeodomain protein, Defective proventriculus (Dve), mediates the refinement of wg expression in both the wing disc and embryonic proventriculus, where dve expression requires Wg signaling. Our results provide evidence for a feedback mechanism that establishes the wg-expressing domain through the action of a Wg-induced gene product.


Assuntos
Sistema Digestório/embriologia , Drosophila/genética , Proteínas de Homeodomínio/genética , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Padronização Corporal/fisiologia , Sistema Digestório/metabolismo , Drosophila/embriologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Proteínas de Membrana/genética , Mosaicismo , Mutação , Proteínas Proto-Oncogênicas/genética , Receptores Notch , Transdução de Sinais , Asas de Animais/embriologia , Asas de Animais/metabolismo , Proteína Wnt1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA