Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 88(15): e0083522, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35862661

RESUMO

Cumene dioxygenase (CumDO) is an initial enzyme in the cumene degradation pathway of Pseudomonas fluorescens IP01 and is a Rieske non-heme iron oxygenase (RO) that comprises two electron transfer components (reductase [CumDO-R] and Rieske-type ferredoxin [CumDO-F]) and one catalytic component (α3ß3-type oxygenase [CumDO-O]). Catalysis is triggered by electrons that are transferred from NAD(P)H to CumDO-O by CumDO-R and CumDO-F. To investigate the binding mode between CumDO-F and CumDO-O and to identify the key CumDO-O amino acid residues for binding, we simulated docking between the CumDO-O crystal structure and predicted model of CumDO-F and identified two potential binding sites: one is at the side-wise site and the other is at the top-wise site in mushroom-like CumDO-O. Then, we performed alanine mutagenesis of 16 surface amino acid residues at two potential binding sites. The results of reduction efficiency analyses using the purified components indicated that CumDO-F bound at the side-wise site of CumDO-O, and K117 of the α-subunit and R65 of the ß-subunit were critical for the interaction. Moreover, these two positively charged residues are well conserved in α3ß3-type oxygenase components of ROs whose electron donors are Rieske-type ferredoxins. Given that these residues were not conserved if the electron donors were different types of ferredoxins or reductases, the side-wise site of the mushroom-like structure is thought to be the common binding site between Rieske-type ferredoxin and α3ß3-type oxygenase components in ROs. IMPORTANCE We clarified the critical amino acid residues of the oxygenase component (Oxy) of Rieske non-heme iron oxygenase (RO) for binding with Rieske-type ferredoxin (Fd). Our results showed that Rieske-type Fd-binding site is commonly located at the stem (side-wise site) of the mushroom-like α3ß3 quaternary structure in many ROs. The resultant binding site was totally different from those reported at the top-wise site of the doughnut-like α3-type Oxy, although α3-type Oxys correspond to the cap (α3 subunit part) of the mushroom-like α3ß3-type Oxys. Critical amino acid residues detected in this study were not conserved if the electron donors of Oxys were different types of Fds or reductases. Altogether, we can suggest that unique binding modes between Oxys and electron donors have evolved, depending on the nature of the electron donors, despite Oxy molecules having shared α3ß3 quaternary structures.


Assuntos
Ferredoxinas , Oxigenases , Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Ferredoxinas/metabolismo , Ferro/metabolismo , NAD/metabolismo , Oxigenases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 10): 1406-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25286950

RESUMO

The initial reaction in bacterial carbazole degradation is catalyzed by carbazole 1,9a-dioxygenase, which consists of terminal oxygenase (Oxy), ferredoxin (Fd) and ferredoxin reductase components. The electron-transfer complex between reduced Oxy and oxidized Fd was crystallized at 293 K using the hanging-drop vapour-diffusion method with PEG 3350 as the precipitant under anaerobic conditions. The crystal diffracted to a maximum resolution of 2.25 Šand belonged to space group P21, with unit-cell parameters a = 97.3, b = 81.6, c = 116.2 Å, α = γ = 90, ß = 100.1°. The VM value is 2.85 Å(3) Da(-1), indicating a solvent content of 56.8%.


Assuntos
Proteínas de Bactérias/química , Dioxigenases/química , Pseudomonas/enzimologia , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Ferredoxinas/química , Oxirredução
3.
Artigo em Inglês | MEDLINE | ID: mdl-24192370

RESUMO

The initial reaction of bacterial carbazole degradation is catalysed by carbazole 1,9a-dioxygenase, which consists of terminal oxygenase, ferredoxin and ferredoxin reductase components. The reduced form of the terminal oxygenase component was crystallized at 293 K by the hanging-drop vapour-diffusion method using PEG MME 550 as the precipitant under anaerobic conditions. The crystals diffracted to a resolution of 1.74 Šand belonged to space group P6(5), with unit-cell parameters a = b = 92.0, c = 243.6 Å. The asymmetric unit contained a trimer of terminal oxygenase molecules.


Assuntos
Proteínas de Bactérias/química , Dioxigenases/química , Complexo III da Cadeia de Transporte de Elétrons/química , Ferro/metabolismo , Proteobactérias/enzimologia , Cristalização , Estabilidade Enzimática , Oxirredução , Análise Espectral , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA