Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 200(1): 79-94, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38547396

RESUMO

Many oncology drugs have been found to induce cardiotoxicity in a subset of patients, which significantly limits their clinical use and impedes the benefit of lifesaving anticancer treatments. Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) carry donor-specific genetic information and have been proposed for exploring the interindividual difference in oncology drug-induced cardiotoxicity. Herein, we evaluated the inter- and intraindividual variability of iPSC-CM-related assays and presented a proof of concept to prospectively predict doxorubicin (DOX)-induced cardiotoxicity (DIC) using donor-specific iPSC-CMs. Our findings demonstrated that donor-specific iPSC-CMs exhibited greater line-to-line variability than the intraindividual variability in impedance cytotoxicity and transcriptome assays. The variable and dose-dependent cytotoxic responses of iPSC-CMs resembled those observed in clinical practice and largely replicated the reported mechanisms. By categorizing iPSC-CMs into resistant and sensitive cell lines based on their time- and concentration-related phenotypic responses to DOX, we found that the sensitivity of donor-specific iPSC-CMs to DOX may predict in vivo DIC risk. Furthermore, we identified a differentially expressed gene, DND microRNA-mediated repression inhibitor 1 (DND1), between the DOX-resistant and DOX-sensitive iPSC-CMs. Our results support the utilization of donor-specific iPSC-CMs in assessing interindividual differences in DIC. Further studies will encompass a large panel of donor-specific iPSC-CMs to identify potential novel molecular and genetic biomarkers for predicting DOX and other oncology drug-induced cardiotoxicity.


Assuntos
Cardiotoxicidade , Doxorrubicina , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Estudo de Prova de Conceito , Doxorrubicina/toxicidade , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Antibióticos Antineoplásicos/toxicidade , Relação Dose-Resposta a Droga , Antineoplásicos/toxicidade
2.
Mol Ther Methods Clin Dev ; 28: 190-207, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36700123

RESUMO

Viral replication places oncolytic viruses (OVs) in a unique niche in the field of drug pharmacokinetics (PK) as their self-amplification obscures exposure-response relationships. Moreover, standard bioanalytical techniques are unable to distinguish the input from replicated drug products. Here, we combine two novel approaches to characterize PK and biodistribution (BD) after systemic administration of vesicular stomatitis virus pseudotyped with lymphocytic choriomeningitis virus glycoprotein (VSV-GP) in healthy mice. First: to decouple input drug PK/BD versus replication PK/BD, we developed and fully characterized a replication-incompetent tool virus that retained all other critical attributes of the drug. We used this approach to quantify replication in blood and tissues and to determine its impact on PK and BD. Second: to discriminate the genomic and antigenomic viral RNA strands contributing to replication dynamics in tissues, we developed an in situ hybridization method using strand-specific probes and assessed their spatiotemporal distribution in tissues. This latter approach demonstrated that distribution, transcription, and replication localized to tissue-resident macrophages, indicating their role in PK and BD. Ultimately, our study results in a refined PK/BD profile for a replicating OV, new proposed PK parameters, and deeper understanding of OV PK/BD using unique approaches that could be applied to other replicating vectors.

3.
J Invest Dermatol ; 133(3): 677-684, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23096700

RESUMO

PHACE syndrome is the association of large segmental facial hemangiomas and congenital anomalies, such as posterior fossa malformations, cerebral arterial anomalies, coarctation of the aorta, eye anomalies, and sternal defects. To date, the reported cases of PHACE syndrome have been sporadic, suggesting that PHACE may have a complex pathogenesis. We report here genomic copy number variation (CNV) analysis of 98 individuals with PHACE syndrome as a first step in deciphering a potential genetic basis of PHACE syndrome. A total of 3,772 CNVs (2,507 duplications and 1,265 deletions) were detected in 98 individuals with PHACE syndrome. CNVs were then eliminated if they failed to meet established criteria for quality, spanned centromeres, or did not contain genes. CNVs were defined as "rare" if not documented in the database of genomic variants. Ten rare CNVs were discovered (size range: 134-406 kb), located at 1q32.1, 1q43, 3q26.32-3q26.33, 3p11.1, 7q33, 10q24.32, 12q24.13, 17q11.2, 18p11.31, and Xq28. There were no rare CNV events that occurred in more than one subject. Therefore, further study is needed to determine the significance of these CNVs in the pathogenesis of PHACE syndrome.


Assuntos
Coartação Aórtica/genética , Variações do Número de Cópias de DNA/genética , DNA/genética , Anormalidades do Olho/genética , Síndromes Neurocutâneas/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Técnicas de Genotipagem , Humanos , Lactente , Masculino , Reprodutibilidade dos Testes , Transdução de Sinais , Adulto Jovem
4.
Appl Environ Microbiol ; 73(11): 3460-9, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17400765

RESUMO

A gene cluster responsible for the biosynthesis of anticancer agent FK228 has been identified, cloned, and partially characterized in Chromobacterium violaceum no. 968. First, a genome-scanning approach was applied to identify three distinctive C. violaceum no. 968 genomic DNA clones that code for portions of nonribosomal peptide synthetase and polyketide synthase. Next, a gene replacement system developed originally for Pseudomonas aeruginosa was adapted to inactivate the genomic DNA-associated candidate natural product biosynthetic genes in vivo with high efficiency. Inactivation of a nonribosomal peptide synthetase-encoding gene completely abolished FK228 production in mutant strains. Subsequently, the entire FK228 biosynthetic gene cluster was cloned and sequenced. This gene cluster is predicted to encompass a 36.4-kb DNA region that includes 14 genes. The products of nine biosynthetic genes are proposed to constitute an unusual hybrid nonribosomal peptide synthetase-polyketide synthase-nonribosomal peptide synthetase assembly line including accessory activities for the biosynthesis of FK228. In particular, a putative flavin adenine dinucleotide-dependent pyridine nucleotide-disulfide oxidoreductase is proposed to catalyze disulfide bond formation between two sulfhydryl groups of cysteine residues as the final step in FK228 biosynthesis. Acquisition of the FK228 biosynthetic gene cluster and acclimation of an efficient genetic system should enable genetic engineering of the FK228 biosynthetic pathway in C. violaceum no. 968 for the generation of structural analogs as anticancer drug candidates.


Assuntos
Chromobacterium/genética , Depsipeptídeos/biossíntese , Depsipeptídeos/genética , Redes e Vias Metabólicas/genética , Família Multigênica , Chromobacterium/metabolismo , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/genética , Dissulfetos/metabolismo , Deleção de Genes , Genes Bacterianos , Dados de Sequência Molecular , Estrutura Molecular , Oxirredução , Oxirredutases/genética , Peptídeo Sintases/genética , Policetídeo Sintases/genética , Análise de Sequência de DNA
5.
J Biol Chem ; 281(22): 15064-72, 2006 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-16574664

RESUMO

Glutamate dehydrogenase (GDH) plays an important role in insulin secretion as evidenced in children by gain of function mutations of this enzyme that cause a hyperinsulinism-hyperammonemia syndrome (GDH-HI) and sensitize beta-cells to leucine stimulation. GDH transgenic mice were generated to express the human GDH-HI H454Y mutation and human wild-type GDH in islets driven by the rat insulin promoter. H454Y transgene expression was confirmed by increased GDH enzyme activity in islets and decreased sensitivity to GTP inhibition. The H454Y GDH transgenic mice had hypoglycemia with normal growth rates. H454Y GDH transgenic islets were more sensitive to leucine- and glutamine-stimulated insulin secretion but had decreased response to glucose stimulation. The fluxes via GDH and glutaminase were measured by tracing 15N flux from [2-15N]glutamine. The H454Y transgene in islets had higher insulin secretion in response to glutamine alone and had 2-fold greater GDH flux. High glucose inhibited both glutaminase and GDH flux, and leucine could not override this inhibition. 15NH4Cl tracing studies showed 15N was not incorporated into glutamate in either H454Y transgenic or normal islets. In conclusion, we generated a GDH-HI disease mouse model that has a hypoglycemia phenotype and confirmed that the mutation of H454Y is disease causing. Stimulation of insulin release by the H454Y GDH mutation or by leucine activation is associated with increased oxidative deamination of glutamate via GDH. This study suggests that GDH functions predominantly in the direction of glutamate oxidation rather than glutamate synthesis in mouse islets and that this flux is tightly controlled by glucose.


Assuntos
Glutamato Desidrogenase/genética , Insulina/metabolismo , Mutação , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Glucose/farmacologia , Glutamato Desidrogenase/antagonistas & inibidores , Glutamato Desidrogenase/metabolismo , Glutamina/farmacologia , Guanosina Trifosfato/farmacologia , Humanos , Hiperinsulinismo/enzimologia , Hiperinsulinismo/genética , Hiperinsulinismo/fisiopatologia , Técnicas In Vitro , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/enzimologia , Ilhotas Pancreáticas/metabolismo , Cinética , Leucina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA