Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Biochem Biophys Res Commun ; 732: 150409, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39033550

RESUMO

INTRODUCTION: WNT1-inducible signalling pathway protein 1 (WISP1) promotes progression of several tumor entities often correlating with worse prognosis. Here its expression regulation and role in the progression of chronic liver diseases (CLD) was investigated. METHODS: WISP1 expression was analyzed in human HCC datasets, in biopsies and serum samples and an HCC patient tissue microarray (TMA) including correlation to clinicopathological parameters. Spatial distribution of WISP1 expression was determined using RNAscope analysis. Regulation of WISP1 expression was investigated in cytokine-stimulated primary mouse hepatocytes (PMH) by array analysis and qRT-PCR. Outcome of WISP1 stimulation was analyzed by IncuCyte S3-live cell imaging, qRT-PCR, and immunoblotting in murine AML12 cells. RESULTS: In a TMA, high WISP1 expression was positively correlated with early HCC stages and male sex. Highest WISP1 expression levels were detected in patients with cirrhosis as compared to healthy individuals, patients with early fibrosis, and non-cirrhotic HCC in liver biopsies, expression datasets and serum samples. WISP1 transcripts were predominantly detected in hepatocytes of cirrhotic rather than tumorous liver tissue. High WISP1 expression was associated with better survival. In PMH, AML12 and HepaRG, WISP1 was identified as a specific TGF-ß1 target gene. Accordingly, expression levels of both cytokines positively correlated in human HCC patient samples. WISP1-stimulation induced the expression of Bcl-xL, PCNA and p21 in AML12 cells. CONCLUSIONS: WISP1 expression is induced by TGF-ß1 in hepatocytes and is associated with cirrhotic liver disease. We propose a crucial role of WISP1 in balancing pro- and anti-tumorigenic effects during premalignant stages of CLD.


Assuntos
Proteínas de Sinalização Intercelular CCN , Carcinogênese , Regulação Neoplásica da Expressão Gênica , Cirrose Hepática , Neoplasias Hepáticas , Microambiente Tumoral , Proteínas de Sinalização Intercelular CCN/genética , Proteínas de Sinalização Intercelular CCN/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Perfilação da Expressão Gênica , Análise de Sobrevida , Humanos , Masculino , Feminino , Animais , Camundongos , Hepatócitos/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Apoptose/genética , Proliferação de Células/genética , Pontos de Checagem do Ciclo Celular/genética , Microambiente Tumoral/genética , Carcinogênese/genética
2.
Gut ; 73(10): 1712-1724, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-38857989

RESUMO

OBJECTIVE: Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver cancer with limited therapeutic options. KRAS mutations are among the most abundant genetic alterations in iCCA associated with poor clinical outcome and treatment response. Recent findings indicate that Poly(ADP-ribose)polymerase1 (PARP-1) is implicated in KRAS-driven cancers, but its exact role in cholangiocarcinogenesis remains undefined. DESIGN: PARP-1 inhibition was performed in patient-derived and established iCCA cells using RNAi, CRISPR/Cas9 and pharmacological inhibition in KRAS-mutant, non-mutant cells. In addition, Parp-1 knockout mice were combined with iCCA induction by hydrodynamic tail vein injection to evaluate an impact on phenotypic and molecular features of Kras-driven and Kras-wildtype iCCA. Clinical implications were confirmed in authentic human iCCA. RESULTS: PARP-1 was significantly enhanced in KRAS-mutant human iCCA. PARP-1-based interventions preferentially impaired cell viability and tumourigenicity in human KRAS-mutant cell lines. Consistently, loss of Parp-1 provoked distinct phenotype in Kras/Tp53-induced versus Akt/Nicd-induced iCCA and abolished Kras-dependent cholangiocarcinogenesis. Transcriptome analyses confirmed preferential impairment of DNA damage response pathways and replicative stress response mediated by CHK1. Consistently, inhibition of CHK1 effectively reversed PARP-1 mediated effects. Finally, Parp-1 depletion induced molecular switch of KRAS-mutant iCCA recapitulating good prognostic human iCCA patients. CONCLUSION: Our findings identify the novel prognostic and therapeutic role of PARP-1 in iCCA patients with activation of oncogenic KRAS signalling.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Fenótipo , Poli(ADP-Ribose) Polimerase-1 , Proteínas Proto-Oncogênicas p21(ras) , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Humanos , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Animais , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Camundongos Knockout , Linhagem Celular Tumoral , Mutação
3.
Gastroenterology ; 166(5): 886-901.e7, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38096955

RESUMO

BACKGROUND & AIMS: Metabolic and transcriptional programs respond to extracellular matrix-derived cues in complex environments, such as the tumor microenvironment. Here, we demonstrate how lysyl oxidase (LOX), a known factor in collagen crosslinking, contributes to the development and progression of cholangiocarcinoma (CCA). METHODS: Transcriptomes of 209 human CCA tumors, 143 surrounding tissues, and single-cell data from 30 patients were analyzed. The recombinant protein and a small molecule inhibitor of the LOX activity were used on primary patient-derived CCA cultures to establish the role of LOX in migration, proliferation, colony formation, metabolic fitness, and the LOX interactome. The oncogenic role of LOX was further investigated by RNAscope and in vivo using the AKT/NICD genetically engineered murine CCA model. RESULTS: We traced LOX expression to hepatic stellate cells and specifically hepatic stellate cell-derived inflammatory cancer-associated fibroblasts and found that cancer-associated fibroblast-driven LOX increases oxidative phosphorylation and metabolic fitness of CCA, and regulates mitochondrial function through transcription factor A, mitochondrial. Inhibiting LOX activity in vivo impedes CCA development and progression. Our work highlights that LOX alters tumor microenvironment-directed transcriptional reprogramming of CCA cells by facilitating the expression of the oxidative phosphorylation pathway and by increasing stemness and mobility. CONCLUSIONS: Increased LOX is driven by stromal inflammatory cancer-associated fibroblasts and correlates with diminished survival of patients with CCA. Modulating the LOX activity can serve as a novel tumor microenvironment-directed therapeutic strategy in bile duct pathologies.


Assuntos
Neoplasias dos Ductos Biliares , Fibroblastos Associados a Câncer , Colangiocarcinoma , Células Estreladas do Fígado , Proteína-Lisina 6-Oxidase , Microambiente Tumoral , Humanos , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/enzimologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Fibroblastos Associados a Câncer/enzimologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/enzimologia , Regulação Neoplásica da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Células Estreladas do Fígado/enzimologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/enzimologia , Fosforilação Oxidativa , Proteína-Lisina 6-Oxidase/metabolismo , Proteína-Lisina 6-Oxidase/genética , Transdução de Sinais
4.
J Hepatol ; 79(3): 666-676, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37290592

RESUMO

BACKGROUND & AIMS: Liver injury after COVID-19 vaccination is very rare and shows clinical and histomorphological similarities with autoimmune hepatitis (AIH). Little is known about the pathophysiology of COVID-19 vaccine-induced liver injury (VILI) and its relationship to AIH. Therefore, we compared VILI with AIH. METHODS: Formalin-fixed and paraffin-embedded liver biopsy samples from patients with VILI (n = 6) and from patients with an initial diagnosis of AIH (n = 9) were included. Both cohorts were compared by histomorphological evaluation, whole-transcriptome and spatial transcriptome sequencing, multiplex immunofluorescence, and immune repertoire sequencing. RESULTS: Histomorphology was similar in both cohorts but showed more pronounced centrilobular necrosis in VILI. Gene expression profiling showed that mitochondrial metabolism and oxidative stress-related pathways were more and interferon response pathways were less enriched in VILI. Multiplex analysis revealed that inflammation in VILI was dominated by CD8+ effector T cells, similar to drug-induced autoimmune-like hepatitis. In contrast, AIH showed a dominance of CD4+ effector T cells and CD79a+ B and plasma cells. T-cell receptor (TCR) and B-cell receptor sequencing showed that T and B cell clones were more dominant in VILI than in AIH. In addition, many T cell clones detected in the liver were also found in the blood. Interestingly, analysis of TCR beta chain and Ig heavy chain variable-joining gene usage further showed that TRBV6-1, TRBV5-1, TRBV7-6, and IgHV1-24 genes are used differently in VILI than in AIH. CONCLUSIONS: Our analyses support that SARS-CoV-2 VILI is related to AIH but also shows distinct differences from AIH in histomorphology, pathway activation, cellular immune infiltrates, and TCR usage. Therefore, VILI may be a separate entity, which is distinct from AIH and more closely related to drug-induced autoimmune-like hepatitis. IMPACT AND IMPLICATIONS: Little is known about the pathophysiology of COVID-19 vaccine-induced liver injury (VILI). Our analysis shows that COVID-19 VILI shares some similarities with autoimmune hepatitis, but also has distinct differences such as increased activation of metabolic pathways, a more prominent CD8+ T cell infiltrate, and an oligoclonal T and B cell response. Our findings suggest that VILI is a distinct disease entity. Therefore, there is a good chance that many patients with COVID-19 VILI will recover completely and will not develop long-term autoimmune hepatitis.


Assuntos
COVID-19 , Doença Hepática Crônica Induzida por Substâncias e Drogas , Hepatite Autoimune , Humanos , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2 , COVID-19/prevenção & controle , Fígado/patologia , Receptores de Antígenos de Linfócitos T , Vacinação
5.
J Hepatol ; 78(2): 364-375, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36848245

RESUMO

BACKGROUND & AIMS: Cholangiocarcinoma (CCA) is a heterogeneous and lethal malignancy, the molecular origins of which remain poorly understood. MicroRNAs (miRs) target diverse signalling pathways, functioning as potent epigenetic regulators of transcriptional output. We aimed to characterise miRNome dysregulation in CCA, including its impact on transcriptome homeostasis and cell behaviour. METHODS: Small RNA sequencing was performed on 119 resected CCAs, 63 surrounding liver tissues, and 22 normal livers. High-throughput miR mimic screens were performed in three primary human cholangiocyte cultures. Integration of patient transcriptomes and miRseq together with miR screening data identified an oncogenic miR for characterization. MiR-mRNA interactions were investigated by a luciferase assay. MiR-CRISPR knockout cells were generated and phenotypically characterized in vitro (proliferation, migration, colony, mitochondrial function, glycolysis) and in vivo using subcutaneous xenografts. RESULTS: In total, 13% (140/1,049) of detected miRs were differentially expressed between CCA and surrounding liver tissues, including 135 that were upregulated in tumours. CCA tissues were characterised by higher miRNome heterogeneity and miR biogenesis pathway expression. Unsupervised hierarchical clustering of tumour miRNomes identified three subgroups, including distal CCA-enriched and IDH1 mutant-enriched subgroups. High-throughput screening of miR mimics uncovered 71 miRs that consistently increased proliferation of three primary cholangiocyte models and were upregulated in CCA tissues regardless of anatomical location, among which only miR-27a-3p had consistently increased expression and activity in several cohorts. FoxO signalling was predominantly downregulated by miR-27a-3p in CCA, partially through targeting of FOXO1. MiR-27a knockout increased FOXO1 levels in vitro and in vivo, impeding tumour behaviour and growth. CONCLUSIONS: The miRNomes of CCA tissues are highly remodelled, impacting transcriptome homeostasis in part through regulation of transcription factors like FOXO1. MiR-27a-3p arises as an oncogenic vulnerability in CCA. IMPACT AND IMPLICATIONS: Cholangiocarcinogenesis entails extensive cellular reprogramming driven by genetic and non-genetic alterations, but the functional roles of these non-genetic events remain poorly understood. By unveiling global miRNA upregulation in patient tumours and their functional ability to increase proliferation of cholangiocytes, these small non-coding RNAs are implicated as critical non-genetic alterations promoting biliary tumour initiation. These findings identify possible mechanisms for transcriptome rewiring during transformation, with potential implications for patient stratification.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Proteína Forkhead Box O1 , MicroRNAs , Humanos , Neoplasias dos Ductos Biliares/genética , Ductos Biliares , Ductos Biliares Intra-Hepáticos , Colangiocarcinoma/genética , MicroRNAs/genética , Proteína Forkhead Box O1/metabolismo
6.
Pathobiology ; 90(3): 166-175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36202073

RESUMO

INTRODUCTION: Colorectal carcinoma (CRC) is among the most common carcinomas in women and men. In the advanced stage, patients are treated based on the RAS status. Recent studies indicate that in the future, in addition to KRAS and NRAS, alterations in other genes, such as PIK3CA or TP53, will be considered for therapy. Therefore, it is important to know the mutational landscape of routinely diagnosed CRC. METHOD: We report the molecular profile of 512 Swiss CRC patients analyzed by targeted next-generation sequencing as part of routine diagnostics at our institute. RESULTS: Pathogenic and likely pathogenic variants were found in 462 (90%) CRC patients. Variants were detected in TP53 (54.3%), KRAS (48.2%), PIK3CA (15.6%), BRAF (13.5%), SMAD4 (10.5%), FBXW7 (7.8%), NRAS (3.5%), PTEN (2.7%), ERBB2 (1.6%), AKT1 (1.5%), and CTNNB1 (0.9%). The remaining pathogenic alterations were found in the genes ATM(n= 1), MAP2K1(n= 1), and IDH2(n= 1). DISCUSSION/CONCLUSIONS: Our analysis revealed the prevalence of potential predictive markers in a large cohort of CRC patients obtained during routine diagnostic analysis. Furthermore, our study is the first of this size to uncover the molecular landscape of CRC in Switzerland.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas p21(ras) , Masculino , Humanos , Feminino , Prevalência , Proteínas Proto-Oncogênicas p21(ras)/genética , Suíça/epidemiologia , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Mutação , Classe I de Fosfatidilinositol 3-Quinases/genética , Sequenciamento de Nucleotídeos em Larga Escala
7.
Histopathology ; 82(5): 722-730, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36583256

RESUMO

BACKGROUND: Hepatocellular adenoma (HCA) is a rare liver tumour, which can have atypical morphological features such as cytological atypia, pseudoglandular architecture, and altered reticulin framework. Little is known about the genetic and epigenetic alterations of such HCAs and whether they show the alterations classically found in hepatocellular carcinoma (HCC) or in HCA without atypical morphology. METHODS: We analysed five HCAs with atypical morphological features and one HCA with transition to HCC. Every tumour was subtyped by immunohistochemistry, sequenced by a targeted NGS panel, and analysed on a DNA methylation microarray. RESULTS: Subtyping of the five HCAs with atypical features revealed two ß-catenin mutated HCA (b-HCA), two ß-catenin mutated inflammatory HCA (b-IHCA), and one sonic hedgehog activated HCA (shHCA). None of them showed mutations typically found in HCC, such as, e.g. TERT or TP53 mutations. The epigenomic pattern of HCAs with atypical morphological features clustered with reference data for HCAs without atypical morphological features but not with HCC. Similarly, phyloepigenetic trees using the DNA methylation data reproducibly showed that HCAs with morphological atypia are much more similar to nonmalignant samples than to malignant samples. Finally, atypical HCAs showed no relevant copy number variations (CNV). CONCLUSION: In our series, mutational, DNA methylation, as well as CNV analyses, supported a relationship of atypical HCAs with nonatypical HCAs rather than with HCC. Therefore, in cases with difficult differential diagnosis between HCC and HCA, it might be advisable to perform targeted sequencing and/or combined methylation/copy number profiling.


Assuntos
Adenoma de Células Hepáticas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Adenoma de Células Hepáticas/patologia , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/patologia , beta Catenina/genética , Variações do Número de Cópias de DNA , Proteínas Hedgehog , Epigênese Genética
8.
Commun Med (Lond) ; 2: 80, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35789568

RESUMO

Background: Hepatocellular carcinoma with neuroendocrine differentiation (HCC-NED) is a very rare subtype of primary liver cancer. Treatment allocation in these patients therefore remains a challenge. Methods: We report the case of a 74-year-old man with a HCC-NED. The tumor was surgically removed in curative intent. Histopathological work-up revealed poorly differentiated hepatocellular carcinoma (Edmondson-Steiner grade IV) with diffuse expression of neuroendocrine markers synaptophysin and chromogranin. Three months after resection, multifocal recurrence of the HCC-NED was observed. In the meantime, tumor organoids have been generated from the resected HCC-NED and extensively characterized. Sensitivity to a number of drugs approved for the treatment of HCC or neuroendocrine carcinomas was tested in vitro. Results: Based on the results of the in vitro drug screening, etoposide and carboplatin are used as first line palliative combination treatment. With genomic analysis revealing a NTRK1-mutation of unknown significance (kinase domain) and tumor organoids found to be sensitive to entrectinib, a pan-TRK inhibitor, the patient was treated with entrectinib as second line therapy. After only two weeks, treatment is discontinued due to deterioration of the patient's general condition. Conclusion: The rapid establishment of patient-derived tumor organoids allows in vitro drug testing and thereby personalized treatment choices, however clinical translation remains a challenge. To the best of our knowledge, this report provides a first proof-of-principle for using organoids for personalized medicine in this rare subtype of primary liver cancer.

9.
Commun Med (Lond) ; 2: 11, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603298

RESUMO

Background: Focal nodular hyperplasia (FNH) is typically considered a benign tumor of the liver without malignant potential. The co-occurrence of FNH and hepatocellular carcinoma (HCC) has been reported in rare cases. In this study we sought to investigate the clonal relationship between these lesions in a patient with FNH-HCC co-occurrence. Methods: A 74-year-old female patient underwent liver tumor resection. The resected nodule was subjected to histologic analyses using hematoxylin and eosin stain and immunohistochemistry. DNA extracted from microdissected FNH and HCC regions was subjected to whole exome sequencing. Clonality analysis were performed using PyClone. Results: Histologic analysis reveals that the nodule consists of an FNH and two adjoining HCC components with distinct histopathological features. Immunophenotypic characterization and genomic analyses suggest that the FNH is clonally related to the HCC components, and is composed of multiple clones at diagnosis, that are likely to have progressed to HCC through clonal selection and/or the acquisition of additional genetic events. Conclusion: To the best of our knowledge, our work is the first study showing a clonal relationship between FNH and HCC. We show that FNH may possess the capability to undergo malignant transformation and to progress to HCC in very rare cases.

10.
Nat Commun ; 13(1): 2436, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508466

RESUMO

Proteogenomic analyses of hepatocellular carcinomas (HCC) have focused on early-stage, HBV-associated HCCs. Here we present an integrated proteogenomic analysis of HCCs across clinical stages and etiologies. Pathways related to cell cycle, transcriptional and translational control, signaling transduction, and metabolism are dysregulated and differentially regulated on the genomic, transcriptomic, proteomic and phosphoproteomic levels. We describe candidate copy number-driven driver genes involved in epithelial-to-mesenchymal transition, the Wnt-ß-catenin, AKT/mTOR and Notch pathways, cell cycle and DNA damage regulation. The targetable aurora kinase A and CDKs are upregulated. CTNNB1 and TP53 mutations are associated with altered protein phosphorylation related to actin filament organization and lipid metabolism, respectively. Integrative proteogenomic clusters show that HCC constitutes heterogeneous subgroups with distinct regulation of biological processes, metabolic reprogramming and kinase activation. Our study provides a comprehensive overview of the proteomic and phophoproteomic landscapes of HCCs, revealing the major pathways altered in the (phospho)proteome.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteogenômica , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Mutação , Proteômica , beta Catenina/metabolismo
11.
Immunity ; 55(6): 1118-1134.e8, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35447093

RESUMO

Understanding the mechanisms of HIV tissue persistence necessitates the ability to visualize tissue microenvironments where infected cells reside; however, technological barriers limit our ability to dissect the cellular components of these HIV reservoirs. Here, we developed protein and nucleic acid in situ imaging (PANINI) to simultaneously quantify DNA, RNA, and protein levels within these tissue compartments. By coupling PANINI with multiplexed ion beam imaging (MIBI), we measured over 30 parameters simultaneously across archival lymphoid tissues from healthy or simian immunodeficiency virus (SIV)-infected nonhuman primates. PANINI enabled the spatial dissection of cellular phenotypes, functional markers, and viral events resulting from infection. SIV infection induced IL-10 expression in lymphoid B cells, which correlated with local macrophage M2 polarization. This highlights a potential viral mechanism for conditioning an immunosuppressive tissue environment for virion production. The spatial multimodal framework here can be extended to decipher tissue responses in other infectious diseases and tumor biology.


Assuntos
Infecções por HIV , Ácidos Nucleicos , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD4-Positivos , Vírus de DNA , Terapia de Imunossupressão , Macaca mulatta , Macrófagos , Vírus da Imunodeficiência Símia/fisiologia , Carga Viral
12.
Hepatol Commun ; 6(6): 1467-1481, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35132819

RESUMO

Chronic liver inflammation causes continuous liver damage with progressive liver fibrosis and cirrhosis, which may eventually lead to hepatocellular carcinoma (HCC). Whereas the 10-year incidence for HCC in patients with cirrhosis is approximately 20%, many of these patients remain tumor free for their entire lives. Clarifying the mechanisms that define the various outcomes of chronic liver inflammation is a key aspect in HCC research. In addition to a wide variety of contributing factors, microRNAs (miRNAs) have also been shown to be engaged in promoting liver cancer. Therefore, we wanted to characterize miRNAs that are involved in the development of HCC, and we designed a longitudinal study with formalin-fixed and paraffin-embedded liver biopsy samples from several pathology institutes from Switzerland. We examined the miRNA expression by nCounterNanostring technology in matched nontumoral liver tissue from patients developing HCC (n = 23) before and after HCC formation in the same patient. Patients with cirrhosis (n = 26) remaining tumor free within a similar time frame served as a control cohort. Comparison of the two cohorts revealed that liver tissue from patients developing HCC displayed a down-regulation of miR-579-3p as an early step in HCC development, which was further confirmed in a validation cohort. Correlation with messenger RNA expression profiles further revealed that miR-579-3p directly attenuated phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) expression and consequently protein kinase B (AKT) and phosphorylated AKT. In vitro experiments and the use of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology confirmed that miR-579-3p controlled cell proliferation and cell migration of liver cancer cell lines. Conclusion: Liver tissues from patients developing HCC revealed changes in miRNA expression. miR-579-3p was identified as a novel tumor suppressor regulating phosphoinositide 3-kinase-AKT signaling at the early stages of HCC development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/genética , Cirrose Hepática/genética , Neoplasias Hepáticas/genética , Estudos Longitudinais , MicroRNAs/genética , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética
13.
Int J Surg Pathol ; 30(3): 273-277, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34738485

RESUMO

Background: NUT carcinoma is a highly aggressive and rare subset of squamous cell carcinoma with grim prognosis. It is under-recognized by both pathologists and oncologists. Recognition is challenging due to its rareness and the fact that its clinical and laboratory features as well as morphological and immunohistochemical characteristics may mimic other malignancies. Case presentation: An interesting case of NUT carcinoma in a 47-year-old male with a large tumor mass in the inferior part of the mediastinum and left lung and increased levels of serum alpha fetoprotein (AFP) is described. Immunohistochemical analysis of both the primary tumor in a bronchoscopy specimen and an excisional biopsy of a subcutaneous metastasis showed positivity for AFP and leukocyte common antigen (LCA) that were misleading and resulted in diagnostic pitfalls of mediastinal germ cell tumor (clinically) and hematolymphoid neoplasm (pathologic report). Immunohistochemical demonstration of NUT protein expression revealed the proper diagnosis, which was further confirmed by RNA sequencing revealing a BRD4-NUTM1 gene fusion.Conclusions: Since NUT carcinoma can show a wide spectrum of histological and immunophenotypic features and can clinically mimic other tumors, use of RNA sequencing with identification of specific NUTM1 fusion partner could be crucial when there are discrepant clinical and histopathological findings. As well, since the category of so-called NUTM1-rearranged neoplasms is rapidly expanding, identification of NUTM1 fusion partner may be essential for the appropriate clinical management.


Assuntos
Carcinoma de Células Escamosas , Proteínas Nucleares , Proteínas de Ciclo Celular/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Fusão Oncogênica/genética , Análise de Sequência de RNA , Fatores de Transcrição/genética , alfa-Fetoproteínas
14.
Cell Rep Med ; 2(10): 100421, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34604819

RESUMO

Understanding viral tropism is an essential step toward reducing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, decreasing mortality from coronavirus disease 2019 (COVID-19) and limiting opportunities for mutant strains to arise. Currently, little is known about the extent to which distinct tissue sites in the human head and neck region and proximal respiratory tract selectively permit SARS-CoV-2 infection and replication. In this translational study, we discover key variabilities in expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), essential SARS-CoV-2 entry factors, among the mucosal tissues of the human proximal airways. We show that SARS-CoV-2 infection is present in all examined head and neck tissues, with a notable tropism for the nasal cavity and tracheal mucosa. Finally, we uncover an association between smoking and higher SARS-CoV-2 viral infection in the human proximal airway, which may explain the increased susceptibility of smokers to developing severe COVID-19. This is at least partially explained by differences in interferon (IFN)-ß1 levels between smokers and non-smokers.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/transmissão , Mucosa Respiratória/metabolismo , Serina Endopeptidases/genética , Fumantes , Tropismo Viral , Idoso , Idoso de 80 Anos ou mais , COVID-19/genética , COVID-19/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Cavidade Nasal/metabolismo , SARS-CoV-2/fisiologia , Traqueia/metabolismo
15.
Children (Basel) ; 8(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34438603

RESUMO

BACKGROUND: multisystem inflammatory syndrome in children (MIS-C) is a new disease associated with a recent infection with severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Affected children can present predominantly with abdominal symptoms, fever and high inflammatory parameters that might lead to a consult by the pediatric surgeon and an indication for surgery. METHODS: clinical data of three patients with MIS-C that underwent surgery were collected. Histopathological analysis of the appendix was performed. RESULTS: we present the clinical course of three children with fever, abdominal pain and vomiting for several days. Clinical examination and highly elevated inflammation markers led to indication for laparoscopy; appendectomy was performed in two patients. Because of intraoperative findings or due to lack of postoperative improvement, all patients were reevaluated and tested positive for MIS-C associated laboratory parameters and were subsequently treated with corticosteroids, intravenous immunoglobulins, acetyl salicylic acid and/or light molecular weight heparin. CONCLUSIONS: we discuss the implications of MIS-C as a new differential diagnosis and stress the importance of assessing the previous medical history, identifying patterns of symptoms and critically surveilling the clinical course. We implemented an algorithm for pediatric surgeons to consider MIS-C as a differential diagnosis for acute abdomen that can be integrated into the surgical workflow.

16.
BMC Genomics ; 22(1): 592, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34348664

RESUMO

BACKGROUND: Genetic aberrations in hepatocellular carcinoma (HCC) are well known, but the functional consequences of such aberrations remain poorly understood. RESULTS: Here, we explored the effect of defined genetic changes on the transcriptome, proteome and phosphoproteome in twelve tumors from an mTOR-driven hepatocellular carcinoma mouse model. Using Network-based Integration of multi-omiCS data (NetICS), we detected 74 'mediators' that relay via molecular interactions the effects of genetic and miRNA expression changes. The detected mediators account for the effects of oncogenic mTOR signaling on the transcriptome, proteome and phosphoproteome. We confirmed the dysregulation of the mediators YAP1, GRB2, SIRT1, HDAC4 and LIS1 in human HCC. CONCLUSIONS: This study suggests that targeting pathways such as YAP1 or GRB2 signaling and pathways regulating global histone acetylation could be beneficial in treating HCC with hyperactive mTOR signaling.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Preparações Farmacêuticas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Transcriptoma
17.
Dis Markers ; 2021: 5566826, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367376

RESUMO

An excess formation of neutrophil extracellular traps (NETs), previously shown to be strongly associated with cytokine storm and acute respiratory distress syndrome (ARDS) with prevalent endothelial dysfunction and thrombosis, has been postulated to be a central factor influencing the pathophysiology and clinical presentation of severe COVID-19. A growing number of serological and morphological evidence has added to this assumption, also in regard to potential treatment options. In this study, we used immunohistochemistry and histochemistry to trace NETs and their molecular markers in autopsy lung tissue from seven COVID-19 patients. Quantification of key immunomorphological features enabled comparison with non-COVID-19 diffuse alveolar damage. Our results strengthen and extend recent findings, confirming that NETs are abundantly present in seriously damaged COVID-19 lung tissue, especially in association with microthrombi of the alveolar capillaries. In addition, we provide evidence that low-density neutrophils (LDNs), which are especially prone to NETosis, contribute substantially to COVID-19-associated lung damage in general and vascular blockages in particular.


Assuntos
COVID-19/patologia , Armadilhas Extracelulares , Lesão Pulmonar/patologia , Neutrófilos/patologia , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/metabolismo , Autopsia , Moléculas de Adesão Celular/metabolismo , Armadilhas Extracelulares/virologia , Feminino , Proteínas Ligadas por GPI/metabolismo , Humanos , Imuno-Histoquímica , Pulmão/patologia , Pulmão/virologia , Lesão Pulmonar/virologia , Masculino , Neutrófilos/metabolismo , Neutrófilos/virologia , Peroxidase/metabolismo
18.
Hepatol Commun ; 5(4): 661-674, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33860124

RESUMO

Transcriptional enhancer factor domain family member 4 (TEAD4) is a downstream effector of the conserved Hippo signaling pathway, regulating the expression of genes involved in cell proliferation and differentiation. It is up-regulated in several cancer types and is associated with metastasis and poor prognosis. However, its role in hepatocellular carcinoma (HCC) remains largely unexplored. Using data from The Cancer Genome Atlas, we found that TEAD4 was overexpressed in HCC and was associated with aggressive HCC features and worse outcome. Overexpression of TEAD4 significantly increased proliferation and migration rates in HCC cells in vitro as well as tumor growth in vivo. Additionally, RNA sequencing analysis of TEAD4-overexpressing HCC cells demonstrated that TEAD4 overexpression was associated with the up-regulation of genes involved in epithelial-to-mesenchymal transition, proliferation, and protein-folding pathways. Among the most up-regulated genes following TEAD4 overexpression were the 70-kDa heat shock protein (HSP70) family members HSPA6 and HSPA1A. Chromatin immunoprecipitation-quantitative real-time polymerase chain reaction experiments demonstrated that TEAD4 regulates HSPA6 and HSPA1A expression by directly binding to their promoter and enhancer regions. The pharmacologic inhibition of HSP70 expression in TEAD4-overexpressing cells reduced the effect of TEAD4 on cell proliferation. Finally, by overexpressing TEAD4 in yes-associated protein (YAP)/transcriptional coactivator with PDZ binding motif (TAZ)-knockdown HCC cells, we showed that the effect of TEAD4 on cell proliferation and its regulation of HSP70 expression does not require YAP and TAZ, the main effectors of the Hippo signaling pathway. Conclusion: A novel Hippo-independent mechanism for TEAD4 promotes cell proliferation and tumor growth in HCC by directly regulating HSP70 family members.


Assuntos
Carcinoma Hepatocelular/genética , Proteínas de Choque Térmico HSP70/fisiologia , Via de Sinalização Hippo , Neoplasias Hepáticas/genética , Fatores de Transcrição de Domínio TEA/fisiologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteínas de Choque Térmico HSP70/genética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Ativação Transcricional , Regulação para Cima
19.
Theranostics ; 11(9): 4011-4029, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33754045

RESUMO

Rationale: Adenylosuccinate lyase (ADSL) is an essential enzyme for de novo purine biosynthesis. Here we sought to investigate the putative role of ADSL in colorectal carcinoma (CRC) carcinogenesis and response to antimetabolites. Methods: ADSL expression levels were assessed by immunohistochemistry or retrieved from The Cancer Genome Atlas (TCGA) dataset. The effects of ADSL silencing or overexpression were evaluated on CRC cell proliferation, cell migration and cell-cycle. In vivo tumor growth was assessed by the chicken chorioallantoic membrane (CAM). Transfected cell lines or patient-derived organoids (PDO) were treated with 5-fluorouracil (5-FU) and 6-mercaptopurine (6-MP) and drug response was correlated with ADSL expression levels. Metabolomic and transcriptomic profiling were performed to identify dysregulated pathways and ADSL downstream effectors. Mitochondrial respiration and glycolytic capacity were measured using Seahorse; mitochondrial membrane potential and the accumulation of ROS were measured by FACS using MitoTracker Red and MitoSOX staining, respectively. Activation of canonical pathways was assessed by immunohistochemistry and immunoblotting. Results: ADSL expression is significantly increased in CRC tumors compared to non-tumor tissue. ADSL-high CRCs show upregulation of genes involved in DNA synthesis, DNA repair and cell cycle. Accordingly, ADSL overexpression accelerated progression through the cell cycle and significantly increased proliferation and migration in CRC cell lines. Additionally, ADSL expression increased tumor growth in vivo and sensitized CRCs to 6-MP in vitro, ex vivo (PDOs) and in vivo (CAM model). ADSL exerts its oncogenic function by affecting mitochondrial function via alteration of the TCA cycle and impairment of mitochondrial respiration. The KEAP1-NRF2 and mTORC1-cMyc axis are independently activated upon ADSL overexpression and may favor the survival and proliferation of ROS-accumulating cells, favoring DNA damage and tumorigenesis. Conclusions: Our results suggest that ADSL is a novel oncogene in CRC, modulating mitochondrial function, metabolism and oxidative stress, thus promoting cell cycle progression, proliferation and migration. Our results also suggest that ADSL is a predictive biomarker of response to 6-mercaptopurine in the pre-clinical setting.


Assuntos
Adenilossuccinato Liase/genética , Neoplasias Colorretais/genética , Mitocôndrias/genética , Fator 2 Relacionado a NF-E2/genética , Oncogenes/genética , Proteínas Proto-Oncogênicas c-myc/genética , Serina-Treonina Quinases TOR/genética , Células CACO-2 , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Respiração Celular/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/genética , Células HT29 , Humanos , Mitocôndrias/patologia
20.
Virchows Arch ; 479(5): 1031-1036, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33506328

RESUMO

Myoepithelial neoplasms of soft tissue are rare tumors with clinical, morphological, immunohistochemical, and genetic heterogeneity. The morphological spectrum of these tumors is broad, and the diagnosis often requires immunostaining to confirm myoepithelial differentiation. Rarely, tumors show a morphology that is typical for myoepithelial neoplasms, while the immunophenotype fails to confirm myoepithelial differentiation. For such lesions, the term "myoepithelioma-like" tumor was introduced. Recently, two cases of myoepithelioma-like tumors of the hands and one case of the foot were described with previously never reported OGT-FOXO gene fusions. Here, we report a 50-year-old woman, with a myoepithelial-like tumor localized in the soft tissue of the forearm and carrying a OGT-FOXO1 fusion gene. Our findings extend the spectrum of mesenchymal tumors involving members of the FOXO family of transcription factors and point to the existence of a family of soft tissue tumors that carry the gene fusion of the OGT-FOXO family.


Assuntos
Biomarcadores Tumorais/genética , Proteína Forkhead Box O1/genética , Fusão Gênica , Mioepitelioma/genética , N-Acetilglucosaminiltransferases/genética , Neoplasias de Tecidos Moles/genética , Biomarcadores Tumorais/análise , Feminino , Antebraço , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Pessoa de Meia-Idade , Mioepitelioma/química , Mioepitelioma/patologia , Mioepitelioma/cirurgia , Neoplasias de Tecidos Moles/química , Neoplasias de Tecidos Moles/patologia , Neoplasias de Tecidos Moles/cirurgia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA